login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squares that are both a sum and a difference of two positive cubes.
2

%I #33 Apr 22 2016 04:58:45

%S 345744,1058841,1750329,8340544,22127616,67765824,68574961,95004009,

%T 112021056,252047376,533794816,771895089,1097199376,1232922769,

%U 1275989841,1416167424,2217373921,4337012736,4388797504,5402250000,5554571841,6080256576,7169347584,10721359936

%N Squares that are both a sum and a difference of two positive cubes.

%C Intersection of A050802 and A038596.

%C Square terms of sequence A225908. - _Michel Marcus_, Apr 22 2016

%D Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.

%H Donovan Johnson and Chai Wah Wu, <a href="/A230717/b230717.txt">Table of n, a(n) for n = 1..500</a> n = 1..100 from Donovan Johnson

%H <a href="/index/Su#ssq">Index to sequences related to sums of cubes</a>

%F a(n) = k^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers k, a, b, c, d.

%F a(n) = A230716(n)^2.

%e 345744 = 588^2 = 14^3 + 70^3 = 71^3 - 23^3.

%o (PARI) isA038596(n)=for(k=sqrtnint(n,3)+1,(sqrtint(12*n-3)+3)\6,if(ispower(n-k^3,3), return(issquare(n)))); 0

%o isA050802(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0

%o is(n)=isA038596(n) && isA050802(n) \\ _Charles R Greathouse IV_, Oct 28 2013

%Y Cf. A050801, A050802, A038596, A038597, A225908, A230716.

%K nonn

%O 1,1

%A _Jonathan Sondow_, Oct 28 2013

%E a(5)-a(24) from _Donovan Johnson_, Oct 28 2013