login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A230205 Expansion of phi(-x) * f(x^1, x^7) in powers of x where phi(), f() are Ramanujan theta functions. 1
1, -1, -2, 0, 2, 2, 0, 1, -2, -2, -1, 0, 0, 0, 2, 0, 0, 2, 0, -2, 0, 0, 1, 0, 0, -2, 2, 1, -2, 0, 0, 0, -2, 0, 0, -2, 0, 2, 2, 0, 0, 0, 0, 4, 0, 1, 0, -2, 0, 0, -2, 0, -1, -2, -2, 0, 0, 0, 2, -2, 0, 0, 0, 2, 2, 2, 0, 0, 2, 0, -2, 0, 0, 0, 2, 0, -1, -4, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Michael Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Euler transform of period 16 sequence [ -1, -2, -2, -1, -2, -1, -1, -2, -1, -1, -2, -1, -2, -2, -1, -2, ...].

a(n) = - A030204(2*n + 1).

EXAMPLE

G.f. = 1 - x - 2*x^2 + 2*x^4 + 2*x^5 + x^7 - 2*x^8 - 2*x^9 - x^10 + ...

G.f. = q^9 - q^25 - 2*q^41 + 2*q^73 + 2*q^89 + q^121 - 2*q^137 - 2*q^153 + ...

MATHEMATICA

a[ n_]:= SeriesCoefficient[EllipticTheta[4, 0, q]*QPochhammer[-q^1, q^8]* QPochhammer[-q^7, q^8]*QPochhammer[q^8], {q, 0, n}];

PROG

(PARI) {a(n) = local(m, j); if( n<0, 0, m = 16*n + 9; sum( k=0, sqrtint(m \ 4), if( issquare(m - 16*k^2, &j), if( k==0, 1, 2) * (-1)^k * ((j%8)==3 || (j%8==5)))))}

CROSSREFS

Cf. A030204.

Sequence in context: A307694 A106277 A088627 * A334841 A024713 A123530

Adjacent sequences:  A230202 A230203 A230204 * A230206 A230207 A230208

KEYWORD

sign

AUTHOR

Michael Somos, Oct 11 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 09:10 EDT 2021. Contains 347630 sequences. (Running on oeis4.)