login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230204
Expansion of phi(-x) * f(x^3, x^5) in powers of x where phi(), f() are Ramanujan theta functions.
2
1, -2, 0, 1, 0, 1, -2, 2, 0, 0, 0, 0, -2, 0, -1, -2, 2, 0, 3, 0, 0, 2, 2, -2, 0, -2, 0, -2, -2, 0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 1, -2, 2, -2, 0, 0, 0, 0, 0, -2, 0, 2, 0, -2, 0, 0, 2, 0, 0, -2, 0, 1, -2, 0, -2, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 2, 2, -2, 2, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Euler transform of period 16 sequence [ -2, -1, -1, -1, -1, -2, -2, -2, -2, -2, -1, -1, -1, -1, -2, -2, ...].
a(n) = A030204(2*n).
EXAMPLE
G.f. = 1 - 2*x + x^3 + x^5 - 2*x^6 + 2*x^7 - 2*x^12 - x^14 - 2*x^15 + ...
G.f. = q - 2*q^17 + q^49 + q^81 - 2*q^97 + 2*q^113 - 2*q^193 - q^225 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q] QPochhammer[ -q^3, q^8] QPochhammer[ -q^5, q^8] QPochhammer[ q^8], {q, 0, n}];
PROG
(PARI) {a(n) = local(m, j); if( n<0, 0, m = 16*n + 1; sum( k=0, sqrtint(m \ 4), if( issquare(m - 16*k^2, &j), if( k==0, 1, 2) * (-1)^k * ((j%8)==1 || (j%8==7)))))}
CROSSREFS
Cf. A030204.
Sequence in context: A090239 A165276 A035698 * A372646 A325592 A161502
KEYWORD
sign
AUTHOR
Michael Somos, Oct 11 2013
STATUS
approved