login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229724
Triangular array read by rows: T(n,k) is the number of partitions of n in which the greatest odd part is equal to 2k-1; n >= 1, 1 <= k <= ceiling(n/2).
1
1, 1, 2, 1, 2, 1, 4, 2, 1, 4, 3, 1, 7, 5, 2, 1, 7, 6, 3, 1, 12, 10, 5, 2, 1, 12, 12, 7, 3, 1, 19, 18, 11, 5, 2, 1, 19, 22, 14, 7, 3, 1, 30, 31, 21, 11, 5, 2, 1, 30, 37, 27, 15, 7, 3, 1, 45, 52, 38, 22, 11, 5, 2, 1, 45, 61, 48, 29, 15, 7, 3, 1, 67, 82, 66, 41
OFFSET
1,3
COMMENTS
Row sums are A086543.
LINKS
FORMULA
O.g.f. for column k: x^(2k-1)/[ prod_{j=1..2k-1}(1-x^j)*prod_{j>=k} (1-x^(2j)) ].
For even n=2j and k>=ceiling((n+2)/4) T(n,k)=A058695(j-k).
For odd n=2j-1 and k>=ceiling((n+2)/4) T(n,k)= A058696(j-k).
EXAMPLE
1;
1;
2, 1;
2, 1;
4, 2, 1;
4, 3, 1;
7, 5, 2, 1;
7, 6, 3, 1;
12, 10, 5, 2, 1;
12, 12, 7, 3, 1;
19, 18, 11, 5, 2, 1;
19, 22, 14, 7, 3, 1;
30, 31, 21, 11, 5, 2, 1;
T(7,2) = 5 because we have: 4+3 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, 1+x,
b(n, i-1) +`if`(i>n, 0, (p->`if`(irem(i, 2, 'r')=0, p,
coeff(p, x, 0)*(1+x^(r+1)) +add(coeff(p, x, j)*x^j,
j=r+2..degree(p))))(b(n-i, i)))))
end:
T:= n->(p-> seq(coeff(p, x, j), j=1..degree(p)))(b(n, n)):
seq(T(n), n=1..20); # Alois P. Heinz, Sep 28 2013
MATHEMATICA
nn=16; Map[Select[#, #>0&]&, Drop[Transpose[Table[CoefficientList[Series[x^(2k-1)/Product[1-x^j, {j, 1, 2k-1}] /Product[(1-x^(2j)), {j, k, nn}], {x, 0, nn}], x], {k, 1, nn/2}]], 1]]//Grid
CROSSREFS
Column k=1 gives: A025065(n-1) for n>1.
Sequence in context: A100380 A205403 A080825 * A034693 A216506 A072342
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Sep 28 2013
STATUS
approved