Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 28 2013 16:00:12
%S 1,1,2,1,2,1,4,2,1,4,3,1,7,5,2,1,7,6,3,1,12,10,5,2,1,12,12,7,3,1,19,
%T 18,11,5,2,1,19,22,14,7,3,1,30,31,21,11,5,2,1,30,37,27,15,7,3,1,45,52,
%U 38,22,11,5,2,1,45,61,48,29,15,7,3,1,67,82,66,41
%N Triangular array read by rows: T(n,k) is the number of partitions of n in which the greatest odd part is equal to 2k-1; n >= 1, 1 <= k <= ceiling(n/2).
%C Row sums are A086543.
%H Alois P. Heinz, <a href="/A229724/b229724.txt">Rows n = 1..200, flattened</a>
%F O.g.f. for column k: x^(2k-1)/[ prod_{j=1..2k-1}(1-x^j)*prod_{j>=k} (1-x^(2j)) ].
%F For even n=2j and k>=ceiling((n+2)/4) T(n,k)=A058695(j-k).
%F For odd n=2j-1 and k>=ceiling((n+2)/4) T(n,k)= A058696(j-k).
%e 1;
%e 1;
%e 2, 1;
%e 2, 1;
%e 4, 2, 1;
%e 4, 3, 1;
%e 7, 5, 2, 1;
%e 7, 6, 3, 1;
%e 12, 10, 5, 2, 1;
%e 12, 12, 7, 3, 1;
%e 19, 18, 11, 5, 2, 1;
%e 19, 22, 14, 7, 3, 1;
%e 30, 31, 21, 11, 5, 2, 1;
%e T(7,2) = 5 because we have: 4+3 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1.
%p b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i=1, 1+x,
%p b(n, i-1) +`if`(i>n, 0, (p->`if`(irem(i, 2, 'r')=0, p,
%p coeff(p, x, 0)*(1+x^(r+1)) +add(coeff(p, x, j)*x^j,
%p j=r+2..degree(p))))(b(n-i, i)))))
%p end:
%p T:= n->(p-> seq(coeff(p, x, j), j=1..degree(p)))(b(n, n)):
%p seq(T(n), n=1..20); # _Alois P. Heinz_, Sep 28 2013
%t nn=16;Map[Select[#,#>0&]&,Drop[Transpose[Table[CoefficientList[Series[x^(2k-1)/Product[1-x^j,{j,1,2k-1}] /Product[(1-x^(2j)),{j,k,nn}],{x,0,nn}],x],{k,1,nn/2}]],1]]//Grid
%Y Column k=1 gives: A025065(n-1) for n>1.
%K nonn,tabf
%O 1,3
%A _Geoffrey Critzer_, Sep 28 2013