login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229547
Numbers n such that n - product_of_digits(n) is a palindrome.
3
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 29, 34, 46, 57, 61, 78, 82, 93, 101, 129, 143, 187, 202, 218, 226, 244, 247, 252, 269, 294, 297, 303, 319, 336, 348, 357, 361, 364, 386, 404, 412, 419, 437, 453, 462, 488, 505, 514, 519, 524, 534, 539, 544, 554, 564, 574, 584, 594, 597, 606, 613, 615, 617, 619, 625, 635, 638, 645, 655, 663
OFFSET
1,3
LINKS
EXAMPLE
143 - (1*4*3) = 131 (a palindrome). So, 143 is a member of the sequence.
MATHEMATICA
f[n_] := Block[{d = n - Times @@ IntegerDigits@ n}, d == FromDigits@ Reverse[IntegerDigits@ d]]; Select[Range[0, 1000], f] (* Michael De Vlieger, Mar 12 2015 *)
PROG
(Python)
def rev(n):
return int(''.join(reversed(str(n))))
def DP(n):
p = 1
for i in str(n):
p *= int(i)
return p
{print(n, end=', ') for n in range(10**3) if n-DP(n)==rev(n-DP(n))}
# Simplified by Derek Orr, Mar 12 2015
(PARI) for(n=0, 10^3, d=digits(n); p=prod(i=1, #d, d[i]); if(Vecrev(digits(n-p))==digits(n-p), print1(n, ", "))) \\ Derek Orr, Mar 12 2015
CROSSREFS
Cf. A070565.
Sequence in context: A256005 A031309 A122621 * A118767 A072941 A225655
KEYWORD
nonn,base,easy
AUTHOR
Derek Orr, Sep 26 2013
EXTENSIONS
More terms from Derek Orr, Mar 12 2015
STATUS
approved