login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers n such that n - product_of_digits(n) is a palindrome.
3

%I #22 Jun 10 2020 08:53:55

%S 0,1,2,3,4,5,6,7,8,9,29,34,46,57,61,78,82,93,101,129,143,187,202,218,

%T 226,244,247,252,269,294,297,303,319,336,348,357,361,364,386,404,412,

%U 419,437,453,462,488,505,514,519,524,534,539,544,554,564,574,584,594,597,606,613,615,617,619,625,635,638,645,655,663

%N Numbers n such that n - product_of_digits(n) is a palindrome.

%H Michael De Vlieger, <a href="/A229547/b229547.txt">Table of n, a(n) for n = 1..10000</a>

%e 143 - (1*4*3) = 131 (a palindrome). So, 143 is a member of the sequence.

%t f[n_] := Block[{d = n - Times @@ IntegerDigits@ n}, d == FromDigits@ Reverse[IntegerDigits@ d]]; Select[Range[0, 1000], f] (* _Michael De Vlieger_, Mar 12 2015 *)

%o (Python)

%o def rev(n):

%o return int(''.join(reversed(str(n))))

%o def DP(n):

%o p = 1

%o for i in str(n):

%o p *= int(i)

%o return p

%o {print(n, end=', ') for n in range(10**3) if n-DP(n)==rev(n-DP(n))}

%o # Simplified by _Derek Orr_, Mar 12 2015

%o (PARI) for(n=0,10^3,d=digits(n);p=prod(i=1,#d,d[i]);if(Vecrev(digits(n-p))==digits(n-p),print1(n,", "))) \\ _Derek Orr_, Mar 12 2015

%Y Cf. A070565.

%K nonn,base,easy

%O 1,3

%A _Derek Orr_, Sep 26 2013

%E More terms from _Derek Orr_, Mar 12 2015