login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229546 Numbers n such that n + product_of_digits(n) is a palindrome. 2
0, 1, 2, 3, 4, 16, 28, 39, 43, 64, 89, 101, 127, 163, 166, 174, 179, 188, 202, 214, 236, 247, 252, 296, 303, 329, 341, 348, 354, 359, 366, 372, 385, 387, 393, 404, 426, 442, 445, 455, 463, 465, 489, 505, 525, 536, 546, 567, 568, 571, 578, 589, 591, 606, 618, 622, 629, 658, 659, 664, 667, 707, 734, 749, 753, 808, 812 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

From Derek Orr, Mar 22 2015 (Start):

The density of these numbers is roughly steady for 10^(2*k-1) < a(n) < 10^(2*k+1) for k = 1, 2, 3, ...

Examples:

k = 1: For 10 < a(n) < 1000, n/a(n) ~ 0.08127...

k = 2: For 1000 < a(n) < 10^5, n/a(n) ~ 0.008192...

k = 3: For 10^5 < a(n) < 10^7, n/a(n) ~ 0.0007753...

(End)

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000

EXAMPLE

329 + (3*2*9) = 383 (a palindrome). So, 329 is in this sequence.

MATHEMATICA

Select[Range[0, 1000], PalindromeQ[#+Times@@IntegerDigits[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 08 2019 *)

PROG

(Python)

def rev(n):

    return int(''.join(reversed(str(n))))

def DP(n):

    p = 1

    for i in str(n):

        p *= int(i)

    return p

{print(n, end=', ') for n in range(10**3) if rev(n+DP(n))==n+DP(n)}

# Simplified by Derek Orr, Mar 22 2015

(PARI) for(n=0, 10^3, d=digits(n); D=digits(n+prod(i=1, #d, d[i])); if(Vecrev(D)==D, print1(n, ", "))) \\ Derek Orr, Mar 22 2015

CROSSREFS

Cf. A007954.

Sequence in context: A004833 A283515 A333802 * A343494 A300855 A333835

Adjacent sequences:  A229543 A229544 A229545 * A229547 A229548 A229549

KEYWORD

nonn,base,easy

AUTHOR

Derek Orr, Sep 26 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 09:41 EDT 2021. Contains 346344 sequences. (Running on oeis4.)