login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229543
Number of undirected circular permutations i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are perfect squares.
0
1, 0, 0, 1, 0, 1, 1, 1, 9, 14, 32, 184, 123, 696, 935, 6554, 21105, 60756, 241780, 517970, 1835109, 5741024, 16091004, 63590090, 285113492, 1098219807
OFFSET
1,9
COMMENTS
Theorem: For any integer n > 5, there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n with both 1 and 4 adjacent to 0 such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are perfect squares.
Proof: By examples, the result holds for n = 6, ..., 11. Below we assume n > 11 and exhibit a circular permutation meeting the requirement.
If n == 0 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,8,7,6,2,3,4,0,1,5,9,10,11,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 3 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,11,10,9,5,1,0,4,3,2,6,7,8,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 1 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,9,8,7,3,2,1,0,4,5,6,10,11,12,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 4 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,12,11,10,6,5,4,0,1,2,3,7,8,9,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 2 (mod 6), then we may take the circular permutation (n,n-4,n-5,n-6,n-10,n-11,n-12,...,10,9,8,4,0,1,5,6,2,3,7,11,12,13,...,n-9,n-8,n-7,n-3,n-2,n-1).
If n == 5 (mod 6), then we may take the circular permutation
(n,n-4,n-5,n-6,n-10,n-11,n-12,...,13,12,11,7,3,2,6,5,1,0,4,8,9,10,...,n-9,n-8,n-7,n-3,n-2,n-1).
Zhi-Wei Sun also used a similar method to show that for any positive integer n not equal to 2 or 4 there is a circular permutation i_0, i_1, ..., i_n of 0, 1, ..., n such that all the n+1 adjacent distances |i_0-i_1|, |i_1-i_2|, ..., |i_{n-1}-i_n|, |i_n-i_0| are triangular numbers.
LINKS
Zhi-Wei Sun, Some new problems in additive combinatorics, preprint, arXiv:1309.1679 [math.NT], 2013-2014.
EXAMPLE
a(1) = 1 due to the circular permutation (0,1).
a(4) = 1 due to the circular permutation (0,1,2,3,4).
a(6) = 1 due to the circular permutation (0,1,5,6,2,3,4).
a(7) = 1 due to the circular permutation (0,1,2,3,7,6,5,4).
a(8) = 1 due to the circular permutation (0,1,5,6,2,3,7,8,4).
a(9) = 9 due to the circular permutations
(0,1,2,3,4,5,6,7,8,9), (0,1,2,3,4,8,7,6,5,9),
(0,1,2,3,7,6,5,4,8,9), (0,1,2,3,7,6,5,9,8,4),
(0,1,2,6,5,4,3,7,8,9), (0,1,2,6,5,9,8,7,3,4),
(0,1,5,4,3,2,6,7,8,9), (0,1,5,9,8,7,6,2,3,4),
(0,4,3,2,1,5,6,7,8,9).
a(10) > 0 due to the permutation (0,1,2,3,7,8,9,10,6,5,4).
a(11) > 0 due to the permutation (0,1,5,9,8,7,11,10,6,2,3,4).
MATHEMATICA
(* A program to compute required circular permutations for n = 8. To get "undirected" circular permutations, we should identify a circular permutation with the one of the opposite direction. Thus a(8) is half of the number of circular permutations yielded by this program. *)
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
f[i_, j_]:=f[i, j]=SQ[Abs[i-j]]
V[i_]:=V[i]=Part[Permutations[{1, 2, 3, 4, 5, 6, 7, 8}], i]
m=0
Do[Do[If[f[If[j==0, 0, Part[V[i], j]], If[j<8, Part[V[i], j+1], 0]]==False, Goto[aa]], {j, 0, 8}]; m=m+1; Print[m, ":", " ", 0, " ", Part[V[i], 1], " ", Part[V[i], 2], " ", Part[V[i], 3], " ", Part[V[i], 4], " ", Part[V[i], 5], " ", Part[V[i], 6], " ", Part[V[i], 7], " ", Part[V[i], 8]]; Label[aa]; Continue, {i, 1, 8!}]
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Zhi-Wei Sun, Sep 25 2013
EXTENSIONS
a(10)-a(24) from Alois P. Heinz, Sep 26 2013
a(25)-a(26) from Max Alekseyev, Jan 08 2015
STATUS
approved