login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229544
Numbers n such that n*product_of_digits(n) is a nonzero cube.
0
1, 8, 243, 784, 7776, 9826, 13122, 24389, 26244, 39366, 47628, 55566, 59895, 71442, 82944, 122825, 124416, 226981, 263424, 275625, 316368, 323433, 333396, 588245, 663255, 774144, 843648, 1339893, 1492992, 1613472, 2341344, 3816336, 3981312, 8719893, 8992364, 9393931, 9927988, 11212884, 11239424, 14823774
OFFSET
1,2
EXAMPLE
7776*(7*7*7*6) = 1600030008 = 252^3. Thus, 7776 is a member of this sequence.
PROG
(Python)
def DP(n):
..p = 1
..for i in str(n):
....p *= int(i)
..return p
def a(n):
..k = 0
..while k < n:
....if k**3 == n*DP(n):
......return n
....if k**3 > n*DP(n):
......return 0
....k += 1
n = 1
while n < 10**6:
..if a(n):
....print(n, end=', ')
..n += 1
# Simplified by Derek Orr, Mar 22 2015
(PARI) for(n=1, 10^7, d=digits(n); p=prod(i=1, #d, d[i]); if(p&&ispower(n*p, 3), print1(n, ", "))) \\ Derek Orr, Mar 22 2015
CROSSREFS
Sequence in context: A272236 A272239 A227319 * A115613 A209540 A085524
KEYWORD
nonn,base
AUTHOR
Derek Orr, Sep 25 2013
EXTENSIONS
Corrected and extended by Derek Orr, Mar 22 2015
STATUS
approved