

A227128


The twisted Euler phifunction for the nonprincipal Dirichlet character mod 3.


1



1, 3, 3, 6, 6, 9, 6, 12, 9, 18, 12, 18, 12, 18, 18, 24, 18, 27, 18, 36, 18, 36, 24, 36, 30, 36, 27, 36, 30, 54, 30, 48, 36, 54, 36, 54, 36, 54, 36, 72, 42, 54, 42, 72, 54, 72, 48, 72, 42, 90, 54, 72, 54, 81, 72, 72, 54, 90, 60, 108, 60, 90, 54, 96
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The nonprincipal Dirichlet character mod 3 is chi(n) = A049347(n1). The twisted Euler phifunction is defined as a(n) = phi(n,chi) = n*product_{pn} (1chi(p)/p), where the product is over all primes p that divide n.
The sequence appears to be the Dirichlet convolution of the sequence A055615(n) and a sequence of signed 1's with the same characteristic function as A156277.
Sequences phi(n,chi) are defined as well for chi=A101455, chi=A080891, chi=A134667 and so on.


LINKS

Table of n, a(n) for n=1..64.
J. Kaczorowski, K. Wiertelak, On the sum of the twisted Euler function, Int. J. Numb. Theory 8 (7) (2012) 17411761
O. Bordelles, B. Cloitre, An alternating sum involving the reciprocal of certain multiplicative functions, J. Int. Seq. 16 (2013) Article 13.6.3


FORMULA

Multiplicative with a(3^e)=3^e, a(p^e) = p^(e1)*(p1) if p== 1 (mod 3) and a(p^e) = p^(e1)*(p+1) if p = 2 (mod 3).  R. J. Mathar, Jul 10 2013


MAPLE

chi := proc(n)
op(1+(n mod 3), [0, 1, 1]) ;
end proc:
A227128 := proc(n)
local a, p ;
a := n ;
for p in numtheory[factorset](n) do
a := a*(1chi(p)/p) ;
end do:
a ;
end proc:


CROSSREFS

Cf. A195459 (for the principal character mod 3).
Sequence in context: A219852 A023842 A165885 * A061795 A110261 A168237
Adjacent sequences: A227125 A227126 A227127 * A227129 A227130 A227131


KEYWORD

nonn,easy,mult


AUTHOR

R. J. Mathar, Jul 02 2013


STATUS

approved



