Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 13 2022 06:39:21
%S 1,3,3,6,6,9,6,12,9,18,12,18,12,18,18,24,18,27,18,36,18,36,24,36,30,
%T 36,27,36,30,54,30,48,36,54,36,54,36,54,36,72,42,54,42,72,54,72,48,72,
%U 42,90,54,72,54,81,72,72,54,90,60,108,60,90,54,96
%N The twisted Euler phi-function for the non-principal Dirichlet character mod 3.
%C The non-principal Dirichlet character mod 3 is chi(n) = A049347(n-1). The twisted Euler phi-function is defined as a(n) = phi(n,chi) = n*Product_{p|n} (1-chi(p)/p), where the product is over all primes p that divide n.
%C The sequence appears to be the Dirichlet convolution of the sequence A055615(n) and a sequence of signed 1's with the same characteristic function as A156277.
%C Sequences phi(n,chi) are defined as well for chi=A101455, chi=A080891, chi=A134667 and so on.
%H Amiram Eldar, <a href="/A227128/b227128.txt">Table of n, a(n) for n = 1..10000</a>
%H Olivier Bordellès and Benoit Cloitre, <a href="http://cs.uwaterloo.ca/journals/JIS/VOL16/Bordelles/bord14.html">An alternating sum involving the reciprocal of certain multiplicative functions</a>, J. Int. Seq. 16 (2013), Article 13.6.3.
%H Jerzy Kaczorowski and Kazimierz Wiertelak, <a href="http://dx.doi.org/10.1142/S179304211250100X">On the sum of the twisted Euler function</a>, Int. J. Numb. Theory 8 (7) (2012), 1741-1761.
%F Multiplicative with a(3^e) = 3^e, a(p^e) = p^(e-1)*(p-1) if p == 1 (mod 3) and a(p^e) = p^(e-1)*(p+1) if p == 2 (mod 3). - _R. J. Mathar_, Jul 10 2013
%F From _Amiram Eldar_, Oct 13 2022: (Start)
%F a(n) = A227128(n)/2 if n divisible by 3, and a(n) = A227128(n) otherwise.
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = 1/(2 * A086724) = 0.639957... . (End)
%p chi := proc(n)
%p op(1+(n mod 3),[0,1,-1]) ;
%p end proc:
%p A227128 := proc(n)
%p local a,p ;
%p a := n ;
%p for p in numtheory[factorset](n) do
%p a := a*(1-chi(p)/p) ;
%p end do:
%p a ;
%p end proc:
%t f[p_, e_] := If[Mod[p, 3] == 2, p + 1, p - 1]*p^(e - 1); f[3, e_] := 3^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Oct 13 2022 *)
%o (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 3, 3^f[i,2], f[i, 1]^(f[i,2] - 1) * (f[i,1] + (-1)^(f[i,1]%3))))}; \\ _Amiram Eldar_, Oct 13 2022
%Y Cf. A049347, A080891, A086724, A101455, A134667, A195459 (for the principal character mod 3), A227128.
%K nonn,easy,mult
%O 1,2
%A _R. J. Mathar_, Jul 02 2013