The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227127 The Akiyama-Tanigawa algorithm applied to 1/(1,2,3,5,... old prime numbers). Reduced numerators of the second row. 0
 1, 1, 2, 8, 20, 12, 28, 16, 36, 60, 22, 72, 52, 28, 60, 96, 102, 36, 114, 80, 42, 132, 92, 144, 200, 104, 54, 112, 58, 120, 434, 128, 198, 68, 350, 72, 222, 228, 156, 240, 246, 84, 430, 88, 180, 92, 564, 576, 196, 100, 204, 312, 106, 540, 330, 336, 342, 116, 354, 240, 122 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS 1/A008578(n) and successive rows: 1,          1/2,     1/3,     1/5,   1/7, 1/2,        1/3,     2/5,    8/35,           = c(n) = a(n)/b(n) 1/6,      -2/15,   18/35, 3/10,  -136/105, 67/42 b(n) is essentially A006094. See A209329. a(n) yields to a permutation of A008578 (via 1, 1, 2, 8, 12, 16, 20, 22, ...): 1, 2, 3, 5, 11, 17, 7, 29,... . LINKS FORMULA a(n) = (n+1)*A001223(n-1), for n>=3. EXAMPLE a(n) is the numerators of c(n): c(0) = 1-1/2 = 1/2, c(1) = 2*(1/2-1/3) = 1/3, c(2) = 3*(1/3-1/5) = 2/5, c(3) = 4*(1/5-1/7)=8/35. a(3) = 4*2 = 8, a(4) = 5*4 = 20. MATHEMATICA a[0, 0] = 1; a[0, m_ /; m > 0] := 1/Prime[m]; a[n_, m_] := a[n, m] = (m+1)*(a[n-1, m ] - a[n-1, m+1]); Table[a[1, m] // Numerator, {m, 0, 60}] (* Jean-François Alcover, Jul 04 2013 *) CROSSREFS Cf. A002110, A006954. Sequence in context: A129445 A082821 A188893 * A227399 A327098 A030097 Adjacent sequences:  A227124 A227125 A227126 * A227128 A227129 A227130 KEYWORD nonn,frac AUTHOR Paul Curtz, Jul 02 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 07:26 EDT 2021. Contains 347609 sequences. (Running on oeis4.)