login
A227127
The Akiyama-Tanigawa algorithm applied to 1/(1,2,3,5,... old prime numbers). Reduced numerators of the second row.
0
1, 1, 2, 8, 20, 12, 28, 16, 36, 60, 22, 72, 52, 28, 60, 96, 102, 36, 114, 80, 42, 132, 92, 144, 200, 104, 54, 112, 58, 120, 434, 128, 198, 68, 350, 72, 222, 228, 156, 240, 246, 84, 430, 88, 180, 92, 564, 576, 196, 100, 204, 312, 106, 540, 330, 336, 342, 116, 354, 240, 122
OFFSET
0,3
COMMENTS
1/A008578(n) and successive rows:
1, 1/2, 1/3, 1/5, 1/7,
1/2, 1/3, 2/5, 8/35, = c(n) = a(n)/b(n)
1/6, -2/15, 18/35,
3/10, -136/105,
67/42
b(n) is essentially A006094. See A209329.
a(n) yields to a permutation of A008578 (via 1, 1, 2, 8, 12, 16, 20, 22, ...): 1, 2, 3, 5, 11, 17, 7, 29,... .
FORMULA
a(n) = (n+1)*A001223(n-1), for n>=3.
EXAMPLE
a(n) is the numerators of c(n): c(0) = 1-1/2 = 1/2, c(1) = 2*(1/2-1/3) = 1/3, c(2) = 3*(1/3-1/5) = 2/5, c(3) = 4*(1/5-1/7)=8/35.
a(3) = 4*2 = 8, a(4) = 5*4 = 20.
MATHEMATICA
a[0, 0] = 1; a[0, m_ /; m > 0] := 1/Prime[m]; a[n_, m_] := a[n, m] = (m+1)*(a[n-1, m ] - a[n-1, m+1]); Table[a[1, m] // Numerator, {m, 0, 60}] (* Jean-François Alcover, Jul 04 2013 *)
CROSSREFS
Sequence in context: A129445 A082821 A188893 * A227399 A327098 A030097
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Jul 02 2013
STATUS
approved