login
A226975
Decimal expansion I_1(1), the modified Bessel function of the first kind.
0
5, 6, 5, 1, 5, 9, 1, 0, 3, 9, 9, 2, 4, 8, 5, 0, 2, 7, 2, 0, 7, 6, 9, 6, 0, 2, 7, 6, 0, 9, 8, 6, 3, 3, 0, 7, 3, 2, 8, 8, 9, 9, 6, 2, 1, 6, 2, 1, 0, 9, 2, 0, 0, 9, 4, 8, 0, 2, 9, 4, 4, 8, 9, 4, 7, 9, 2, 5, 5, 6, 4, 0, 9, 6, 4, 3, 7, 1, 1, 3, 4, 0, 9, 2, 6, 6, 4, 9, 9, 7, 7, 6, 6, 8, 1, 4, 4, 1, 0, 0, 6, 4, 6, 7, 7, 8, 8, 6
OFFSET
0,1
COMMENTS
This is also the derivative of the zeroth modified Bessel function at 1.
REFERENCES
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 51, page 504.
LINKS
FORMULA
From Antonio GraciĆ” Llorente, Jan 29 2024: (Start)
I_1(1) = (1/2) * Sum_{k>=0} (2*k)/(4^k*k!^2) = (1/2) * Sum_{k>=0} (2*k)/A002454(k).
Equals (1/2) * Sum_{k>=0} (4*k^2 + 4*k - 1) / (2*k)!!^2.
Equals exp(-1) * Sum_{k>=0} binomial(2*k,k+1)/(2^k*k!).
Equals (-e) * Sum_{k>=0} (-1/2)^k * binomial(2*k,k+1)/k!
Equals (1/Pi)*Integral_{t=0..Pi} exp(cos(t))*cos(t) dt. (End)
EXAMPLE
0.56515910399248502720769602760986330732889962162109...
MATHEMATICA
RealDigits[BesselI[1, 1], 10, 110][[1]]
PROG
(PARI) besseli(1, 1) \\ Charles R Greathouse IV, Feb 19 2014
(SageMath)
((1/2) * sum(1 / (4^x * factorial(x) * rising_factorial(2, x)), x, 0, oo)).n(360)
# Peter Luschny, Jan 29 2024
CROSSREFS
Sequence in context: A020504 A293009 A011004 * A377635 A273065 A071629
KEYWORD
nonn,cons
AUTHOR
Horst-Holger Boltz, Jun 25 2013
STATUS
approved