login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226974
a(n) = Sum_{k=0..floor(n/3)} binomial(n,3*k)*binomial(4*k,k)/(3*k+1).
9
1, 1, 1, 2, 5, 11, 25, 64, 169, 443, 1181, 3224, 8897, 24701, 69161, 195255, 554577, 1583109, 4541461, 13086574, 37856437, 109892403, 320034309, 934774902, 2737689189, 8037746691, 23652564261, 69749727716, 206091735797, 610061655665, 1808962146529
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n,3*k)*A002293(k).
Representation in terms of special values of hypergeometric function of type 6F5: a(n) = hypergeom([1/4, 1/2, 3/4, -(1/3)*n, -(1/3)*n+2/3, -(1/3)*n+1/3], [1/3, 2/3, 2/3, 1, 4/3],-4^4/3^3), n>=0.
Recurrence: 27*n*(n+1)*(n-1)*a(n) = 162*n*(n-1)^2*a(n-1) - 81*(5*n^2-15*n+12)*(n-1)*a(n-2) + 4*(199*n^3 - 1098*n^2 + 2043*n - 1296)*a(n-3) - (n-3)*(1173*n^2 - 5097*n + 5584)*a(n-4) + 6*(n-4)*(n-3)*(155*n-401)*a(n-5) - 283*(n-5)*(n-4)*(n-3)*a(n-6). - Vaclav Kotesovec, Jun 28 2013
a(n) ~ (3+4^(1+1/3))^(n+3/2)/(8*3^(n+1)*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 28 2013
G.f. satisfies A(x)=1+x^3*A(x)^4+x/(1-x). - Vladimir Kruchinin, May 17 2020
From Peter Bala, Sep 15 2021: (Start)
O.g.f.: A(x) = (1/x)*series reversion( x*(1 - x^3)/(1 + x*(1 - x^3) ).
The g.f. of the m-th binomial transform of this sequence is equal to (1/x)*series reversion( x*(1 - x^3)/(1 + (m + 1)*x*(1 - x^3) ). The case m = -1 gives the sequence [1,0,0,1,0,0,4,0,0,22,0,0,140,...] - an aerated version of A002293. (End)
MAPLE
A226974 := proc(n)
hypergeom([-n/3, -n/3+2/3, -n/3+1/3, 1/4, 1/2, 3/4], [1/3, 2/3, 2/3, 1, 4/3], -256/27) ;
simplify(%) ;
end proc:
seq(A226974(n), n=0..40) ; # R. J. Mathar, Jan 10 2023
MATHEMATICA
Table[Sum[Binomial[n, 3*k]*Binomial[4*k, k]/(3*k+1), {k, 0, Floor[n/3]}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 28 2013 *)
PROG
(Maxima)
a(n):=if n<0 then 0 else if n=0 then 1 else sum(sum(sum(a(l)*a(i)*a(j)*a(n-i-j-l-3), l, 0, n-3-i-j), j, 0, n-3-i), i, 0, n-3)+1; /* Vladimir Kruchinin, May 17 2020 */
(PARI) a(n) = sum(k=0, n\3, binomial(n, 3*k)*binomial(4*k, k)/(3*k+1)); \\ Michel Marcus, Sep 16 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Karol A. Penson, Jun 25 2013
STATUS
approved