login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226972
Emirps whose binary conversion remains emirp when read in decimal.
1
157, 709, 1283, 1321, 3469, 3929, 9643, 15101, 15241, 15383, 17443, 18439, 19237, 30643, 35911, 38393, 39799, 71711, 73849, 78901, 92381, 92503, 93971, 94219, 98317, 105929, 106427, 106721, 111821, 112481, 123923, 128879, 130693, 146989, 149893, 152407, 165449
OFFSET
1,1
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..1691 (numbers < 4*10^7)
EXAMPLE
For n=1 the a(1)=157 and its reversal 751, both are different and primes. The binary conversion of 157 is 10011101 and its reversal 10111001, both are different and primes.
MAPLE
with(numtheory):with(StringTools):
# ==== DECI EMIRP ===== BINARY EMIRP ===
PRS:= proc(x, y)
local i, a, a1, a2, b, c, d, e, f, g, h, m, count;
count:=1;
for i from x to y do;
a:=ithprime(i);
a1:=parse(Reverse(convert((a), string)));
a2:=isprime(a1);
b:=convert(a, binary);
c:=isprime(b);
d:=parse(Reverse(convert((b), string)));
e:=isprime(d);
g:=length(a);
h:= length(d);
if a2 and c and e and a<>a1 and d<>b then lprint(count, a) ; count:=count+1; fi ; od;
lprint("Finished " ):
end:
PRS(1, 100000);
MATHEMATICA
Select[Prime@Range@20000, PrimeQ[r = FromDigits@Reverse@IntegerDigits[#]] && r != # && PrimeQ[b = FromDigits[d = IntegerDigits[#, 2]]] && b != (br = FromDigits@ Reverse@d) && PrimeQ[br] &] (* Giovanni Resta, Jun 25 2013 *)
CROSSREFS
Cf. A006567 (Emirps, primes whose reversal is a different prime).
Sequence in context: A142833 A142478 A052028 * A337427 A142766 A326442
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Jun 24 2013
STATUS
approved