login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225919
a(n) is the least k such that f(a(n-1)+1) + ... + f(k) > f(a(n-2)+1) + ... + f(a(n-1)) for n > 1, where f(n) = 1/(n+4) and a(1) = 1.
1
1, 11, 40, 124, 367, 1070, 3104, 8989, 26016, 75280, 217815, 630210, 1823388, 5275597, 15263836, 44162700, 127775471, 369691398, 1069624136, 3094731965, 8953954568, 25906380024, 74954649447, 216865477466, 627454543012, 1815407450477, 5252498763364, 15196997925652
OFFSET
1,2
COMMENTS
Conjecture: a(n) is linearly recurrent. See A225918 for details.
FORMULA
For n>=3, a(n) = ceiling( (a(n-1)+4.5)^2 / (a(n-2)+4.5) - 4.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022
EXAMPLE
a(1) = 1 by decree; a(2) = 11 because 1/6 + ... + 1/14 < 1 < 1/6 + ... + 1/(11+4), so that a(3) = 40 because 1/16 + ... + 1/43 < 1/6 + ... + 1/15 < 1/16 + ... + 1/(40+4).
Successive values of a(n) yield a chain: 1 < 1/(1+5) + ... + 1/(11+4) < 1/(11+5) + ... + 1/(40+4) < 1/(40+5) + ... + 1/(124+4) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.8931..., it appears that lim_{n->infinity} b(n) = log(R) = 1.0623... .
MATHEMATICA
nn = 11; f[n_] := 1/(n + 4); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &]; s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
CROSSREFS
Cf. A225918.
Sequence in context: A064798 A056124 A356043 * A348586 A064768 A135719
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 21 2013
EXTENSIONS
a(11)-a(16) from Robert G. Wilson v, May 22 2013
a(17)-a(18) from Robert G. Wilson v, Jun 13 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022
STATUS
approved