login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225916
Product of distinct primes p*q such that both 2p + q and p + 2q are prime numbers.
2
15, 21, 35, 39, 51, 65, 95, 119, 141, 155, 159, 161, 185, 201, 219, 221, 291, 305, 329, 341, 365, 371, 395, 471, 485, 501, 515, 519, 579, 581, 611, 669, 681, 695, 779, 791, 815, 831, 851, 905, 921, 959, 989, 1059, 1079, 1121, 1139, 1145, 1149, 1199, 1205, 1241
OFFSET
1,1
EXAMPLE
15=3*5, both 2*3+5=11 and 3+2*5=13 are prime number, so 15 is a term of this sequence.
MATHEMATICA
NextA046388[n_] := Block[{p1 = Prime[Range[2, PrimePi[Max[3, NextPrime[Ceiling@Sqrt[n + 1] - 1]]]]], p2}, p2 = Table[Max[NextPrime[p1[[i]]], NextPrime[Ceiling[(n + 1)/p1[[i]]] - 1]], {i, Length[p1]}]; Min[p1*p2]]; seed=1; Table[While[seed = NextA046388[seed]; fct = FactorInteger[seed]; p1 = fct[[1, 1]]; p2 = fct[[2, 1]]; c1 = 2*p1 + p2; c2 = p1 + 2*p2; ! ((PrimeQ[c1]) && (PrimeQ[c2]))]; seed, {i, 1, 52}]
nn = 1241; pq = Select[Range[nn], PrimeOmega[#] == 2 &]; p = Table[FactorInteger[r][[1, 1]], {r, pq}]; q = pq/p; t = {}; Do[If[PrimeQ[2 p[[i]] + q[[i]]] && PrimeQ[p[[i]] + 2 q[[i]]], AppendTo[t, pq[[i]]]], {i, Length[pq]}]; t (* T. D. Noe, May 21 2013 *)
CROSSREFS
Cf. A046388.
Sequence in context: A346812 A296244 A309005 * A128279 A099611 A081934
KEYWORD
nonn
AUTHOR
Lei Zhou, May 20 2013
STATUS
approved