login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225915
Expansion of (k(q) / 4)^4 in powers of q where k() is a Jacobi elliptic function.
1
1, -16, 152, -1088, 6444, -33184, 153152, -646528, 2533070, -9311664, 32387616, -107299904, 340436664, -1039026144, 3061896704, -8739810688, 24229115109, -65390485328, 172155210320, -442928464640, 1115433685796, -2753362613984, 6670224790272, -15876957230848
OFFSET
2,2
LINKS
FORMULA
Expansion of (eta(q) * eta(q^4)^2 / eta(q^2)^3)^16 in powers of q.
Euler transform of period 4 sequence [-16, 32, -16, 0, ...].
G.f.: q^2 * (Product_{k>0} (1 + q^(2*k)) / (1 + q^(2*k - 1)))^16.
Convolution square of A005798.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)) / (65536 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 17 2017
EXAMPLE
G.f. = q^2 - 16*q^3 + 152*q^4 - 1088*q^5 + 6444*q^6 - 33184*q^7 + 153152*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (InverseEllipticNomeQ[ q] / 16)^2, {q, 0, n}];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, 0, q^(1/2)])^16, {q, 0, n}];
a[ n_] := SeriesCoefficient[ q ( Product[ 1 - q^k, {k, 4, n - 1, 4}]/
Product[ 1 - (-q)^k, {k, n - 1}])^16, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^16, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2013
STATUS
approved