login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225912
Expansion of q * (phi(-q^2) * psi(-q)^2)^4 in powers of q where phi(), psi() are Ramanujan theta functions.
2
0, 1, -8, 20, 0, -74, 96, -24, 0, 157, -432, 124, 0, 478, 704, -1480, 0, -1198, 792, 3044, 0, -480, -4320, 184, 0, 2351, 3344, -1720, 0, -3282, 5184, -5728, 0, 2480, -4752, 1776, 0, 10326, -6688, 9560, 0, -8886, -8448, -9188, 0, -11618, 32832, 23664, 0, -16231
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q)^2 * eta(q^4))^4 in powers of q.
Euler transform of period 4 sequence [-8, -8, -8, -12, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (8 t)) = 2^14 (t/i)^6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A225872.
G.f.: x * (Product_{k>0} (1 - x^k)^2 * (1 - x^(4*k)))^4.
EXAMPLE
G.f. = q - 8*q^2 + 20*q^3 - 74*q^5 + 96*q^6 - 24*q^7 + 157*q^9 - 432*q^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ -(EllipticTheta[ 4, 0, q^2] EllipticTheta[ 2, 0, I q^(1/2)]^2 / 4 )^4, {q, 0, n}];
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q]^2 QPochhammer[ q^4])^4, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A)^2 * eta(x^4 + A))^4, n))};
CROSSREFS
Cf. A225923 (bisection?)
Sequence in context: A000731 A034433 A282942 * A120081 A173206 A288423
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2013
STATUS
approved