login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034433
Expansion of q^(-3) * (eta(q) * eta(q^8))^8 in powers of q.
2
1, -8, 20, 0, -70, 64, 56, 0, -133, -96, 148, 0, 670, -512, -968, 0, 1077, 1680, -2064, 0, -2098, 768, 4400, 0, -1766, -8128, 7044, 0, 744, 4096, -4760, 0, -9780, 16344, -6652, 0, 7894, -13440, -10320, 0, 41923, -8736, -16780, 0, -5892, -6144, 14560, 0, -27886, -11056, 55940
OFFSET
0,2
LINKS
FORMULA
Euler transform of period 8 sequence [ -8, -8, -8, -8, -8, -8, -8, -16, ...]. - Michael Somos, Nov 11 2007
a(4*n+3) = 0.
EXAMPLE
q^3 - 8*q^4 + 20*q^5 - 70*q^7 + 64*q^8 + 56*q^9 - 133*q^11 - 96*q^12 + ...
MATHEMATICA
QP = QPochhammer; s = (QP[q]*QP[q^8])^8 + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 25 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( ( eta(x + A) * eta(x^8 + A) )^8, n))} /* Michael Somos, Nov 11 2007 */
CROSSREFS
-8 * A002288(n) = a(4*n-3).
Sequence in context: A124972 A161969 A000731 * A282942 A225912 A120081
KEYWORD
sign
STATUS
approved