login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A309005
Odd squarefree composite numbers m such that m+2 is prime.
1
15, 21, 35, 39, 51, 57, 65, 69, 77, 87, 95, 105, 111, 129, 155, 161, 165, 177, 195, 209, 221, 231, 237, 249, 255, 267, 291, 305, 309, 329, 335, 345, 357, 365, 371, 377, 381, 395, 399, 407, 417, 429, 437, 447, 455, 465, 485, 489, 497, 501, 519, 545, 555, 561, 591, 597, 611
OFFSET
1,1
COMMENTS
The squarefree terms of A241809 and A136354 are in this sequence.
LINKS
EXAMPLE
15 = 3*5 is the smallest squarefree composite number m such that m+2 is prime; 15+2=17.
MAPLE
with(NumberTheory):
N := 500;
for n from 2 to N do
if IsSquareFree(n) and not mod(n, 2) = 0 and not isprime(n) and isprime(n+2) then print(n);
end if:
end do:
MATHEMATICA
Select[Range[15, 611, 2], And[CompositeQ@ #, SquareFreeQ@ #, PrimeQ[# + 2]] &] (* Michael De Vlieger, Jul 08 2019 *)
Select[Prime[Range[2, 150]]-2, SquareFreeQ[#]&&CompositeQ[#]&] (* Harvey P. Dale, Dec 03 2022 *)
PROG
(PARI) isok(n) = isprime(n+2) && (n%2) && (n>1) && !isprime(n) && issquarefree(n); \\ Michel Marcus, Jul 05 2019
(Magma) [n: n in [2..611] | IsPrime(n+2) and not IsPrime(n) and IsSquarefree(n)]; // Vincenzo Librandi, Jul 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved