login
A099611
a(n) is the largest odd number that is less than n^2 and is the product of two distinct primes.
3
15, 21, 35, 39, 57, 77, 95, 119, 143, 161, 187, 221, 253, 287, 323, 355, 395, 437, 481, 527, 573, 623, 671, 723, 781, 835, 899, 959, 1011, 1081, 1149, 1219, 1293, 1363, 1441, 1517, 1591, 1679, 1763, 1843, 1929, 2021, 2105, 2201, 2291, 2395, 2497, 2599, 2701
OFFSET
4,1
COMMENTS
a(n) < A000290(n) < A099610(n); subsequence of A046388.
The offset is 4 since a(n) does not exist for n <= 3.
MATHEMATICA
Module[{nn=70, p2p}, p2p=Reverse[Union[Times@@@Subsets[Prime[Range[ 2, PrimePi[ Ceiling[ nn^2/3]]]], {2}]]]; Table[SelectFirst[p2p, #<n^2&], {n, 4, nn}]] (* Harvey P. Dale, Dec 06 2021 *)
PROG
(Python)
from itertools import count
from sympy import factorint
def A099611(n):
for i in count(n**2-(n%2)-1, -2):
fs = factorint(i)
if len(fs) == 2 == sum(fs.values()):
return i # Chai Wah Wu, Dec 06 2021
(PARI) a(n) = forstep(k=n^2-n%2-1, 1, -2, if (bigomega(k)==2&&omega(k)==2, return(k))); \\ Michel Marcus, Dec 07 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 25 2004
EXTENSIONS
Definition clarified by N. J. A. Sloane, Dec 06 2021
STATUS
approved