OFFSET
1,2
COMMENTS
Conjecture: a(n) is linearly recurrent. See A225918 for details.
The sequence does not satisfy any linear recurrence of order below 50, which suggests it's unlikely to exist. - Max Alekseyev, Jan 27 2022
FORMULA
For n>=3, a(n) = ceiling( (a(n-1)+6.5)^2 / (a(n-2)+6.5) - 6.5 ) unless the fractional part of the number inside ceiling() is very small (~ 1/a(n-2)). - Max Alekseyev, Jan 27 2022
EXAMPLE
a(1) = 1 by decree; a(2) = 14 because 1/8 + ... + 1/19 < 1 < 1/8 + ... + 1/(14+6), so that a(3) = 50 because 1/21 + ... + 1/55 < 1/8 + ... + 1/20 < 1/21 + ... + 1/(50+6).
Successive values of a(n) yield a chain: 1 < 1/(1+7) + ... + 1/(14+6) < 1/(14+7) + ... + 1/(50+6) < 1/(50+7) + ... + 1/(150+6) < ...
Abbreviating this chain as b(1) = 1 < b(2) < b(3) < b(4) < ... < R = 2.7721..., it appears that lim_{n->infinity} b(n) = log(R) = 1.0196... .
MATHEMATICA
nn = 11; f[n_] := 1/(n + 6); a[1] = 1; g[n_] := g[n] = Sum[f[k], {k, 1, n}]; s = 0; a[2] = NestWhile[# + 1 &, 2, ! (s += f[#]) >= a[1] &];
s = 0; a[3] = NestWhile[# + 1 &, a[2] + 1, ! (s += f[#]) >= g[a[2]] - f[1] &]; Do[s = 0; a[z] = NestWhile[# + 1 &, a[z - 1] + 1, ! (s += f[#]) >= g[a[z - 1]] - g[a[z - 2]] &], {z, 4, nn}]; m = Map[a, Range[nn]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 21 2013
EXTENSIONS
a(13)-a(16) from Robert G. Wilson v, May 22 2013
a(17)-a(18) from Robert G. Wilson v, Jun 13 2013
a(19) from Jinyuan Wang, Jun 14 2020
Terms a(20) on from Max Alekseyev, Jan 27 2022
STATUS
approved