OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4,1).
FORMULA
a(n) = ( 19*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - 9*(((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)) )/sqrt(5) - 8.
G.f.: (1+7*x)/((1-x)*(1-3*x+x^2)).
a(n) = Fibonacci(2*n+5) + 2*Lucas(2*n) - 8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8.
E.g.f.: exp(3*x/2)*( 9*cosh(sqrt(5)*x/2) - (11/sqrt(5))*sinh(sqrt(5)*x/2) ) - 8*exp(x). (End)
MAPLE
with(combinat); seq( fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8, n=0..30); # G. C. Greubel, Jan 19 2020
MATHEMATICA
LinearRecurrence[{4, -4, 1}, {1, 11, 40}, 30] (* Harvey P. Dale, Mar 25 2015 *)
PROG
(PARI) vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-1) -8 ) \\ G. C. Greubel, Jan 19 2020
(Magma) [Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8: n in [0..30]]; // G. C. Greubel, Jan 19 2020
(Sage) [fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8 for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) List([0..30], n-> Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8 ); # G. C. Greubel, Jan 19 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 07 2000
STATUS
approved