login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056124
a(n) = 3*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=11.
1
1, 11, 40, 117, 319, 848, 2233, 5859, 15352, 40205, 105271, 275616, 721585, 1889147, 4945864, 12948453, 33899503, 88750064, 232350697, 608302035, 1592555416, 4169364221, 10915537255, 28577247552, 74816205409
OFFSET
0,2
FORMULA
a(n) = ( 19*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - 9*(((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)) )/sqrt(5) - 8.
G.f.: (1+7*x)/((1-x)*(1-3*x+x^2)).
a(n) = Fibonacci(2*n+5) + 2*Lucas(2*n) - 8.
From G. C. Greubel, Jan 19 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8.
E.g.f.: exp(3*x/2)*( 9*cosh(sqrt(5)*x/2) - (11/sqrt(5))*sinh(sqrt(5)*x/2) ) - 8*exp(x). (End)
MAPLE
with(combinat); seq( fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8, n=0..30); # G. C. Greubel, Jan 19 2020
MATHEMATICA
LinearRecurrence[{4, -4, 1}, {1, 11, 40}, 30] (* Harvey P. Dale, Mar 25 2015 *)
PROG
(PARI) vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-1) -8 ) \\ G. C. Greubel, Jan 19 2020
(Magma) [Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8: n in [0..30]]; // G. C. Greubel, Jan 19 2020
(Sage) [fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8 for n in (0..30)] # G. C. Greubel, Jan 19 2020
(GAP) List([0..30], n-> Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8 ); # G. C. Greubel, Jan 19 2020
CROSSREFS
Cf. A000032, A000045, A055850 (first differences).
Sequence in context: A353447 A059142 A064798 * A356043 A225919 A348586
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 07 2000
STATUS
approved