The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A056124 a(n) = 3*a(n-1) - a(n-2) + 8 with a(0)=1, a(1)=11. 1
 1, 11, 40, 117, 319, 848, 2233, 5859, 15352, 40205, 105271, 275616, 721585, 1889147, 4945864, 12948453, 33899503, 88750064, 232350697, 608302035, 1592555416, 4169364221, 10915537255, 28577247552, 74816205409 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (4,-4,1). FORMULA a(n) = ( 19*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - 9*(((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)) )/sqrt(5) - 8. G.f.: (1+7*x)/((1-x)*(1-3*x+x^2)). a(n) = Fibonacci(2*n+5) + 2*Lucas(2*n) - 8. From G. C. Greubel, Jan 19 2020: (Start) a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8. E.g.f.: exp(3*x/2)*( 9*cosh(sqrt(5)*x/2) - (11/sqrt(5))*sinh(sqrt(5)*x/2) ) - 8*exp(x). (End) MAPLE with(combinat); seq( fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8, n=0..30); # G. C. Greubel, Jan 19 2020 MATHEMATICA LinearRecurrence[{4, -4, 1}, {1, 11, 40}, 30] (* Harvey P. Dale, Mar 25 2015 *) PROG (PARI) vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-1) -8 ) \\ G. C. Greubel, Jan 19 2020 (Magma) [Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8: n in [0..30]]; // G. C. Greubel, Jan 19 2020 (Sage) [fibonacci(2*n+2) + 8*fibonacci(2*n+1) - 8 for n in (0..30)] # G. C. Greubel, Jan 19 2020 (GAP) List([0..30], n-> Fibonacci(2*n+2) + 8*Fibonacci(2*n+1) - 8 ); # G. C. Greubel, Jan 19 2020 CROSSREFS Cf. A000032, A000045, A055850 (first differences). Sequence in context: A353447 A059142 A064798 * A356043 A225919 A348586 Adjacent sequences: A056121 A056122 A056123 * A056125 A056126 A056127 KEYWORD easy,nonn AUTHOR Barry E. Williams, Jul 07 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 09:29 EST 2024. Contains 370228 sequences. (Running on oeis4.)