OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (3,-1).
FORMULA
a(n) = {11*[((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n] - [((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)]}/sqrt(5).
G.f.: (1+8*x)/(1-3*x+x^2).
a(n) = 6*Lucas(2n+1) - Fibonacci(2n+5).
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+2) + 8*Fibonacci(2*n).
E.g.f.: exp(3*t/2)*( cosh(sqrt(5)*t/2) + (19/sqrt(5))*sinh(sqrt(5)*t/2) ). (End)
MAPLE
with(combinat); seq( fiboacci(2*n+2) +8*fibonacci(2*n), n=0..30); # G. C. Greubel, Jan 17 2020
MATHEMATICA
Table[Fibonacci[2*n+2] +8*Fibonacci[2*n], {n, 0, 30}] (* G. C. Greubel, Jan 17 2020 *)
PROG
(PARI) vector(31, n, fibonacci(2*n) +8*fibonacci(2*n-2) ) \\ G. C. Greubel, Jan 17 2020
(Magma) [Fibonacci(2*n+2) +8*Fibonacci(2*n): n in [0..30]]; // G. C. Greubel, Jan 17 2020
(Sage) [fibonacci(2*n+2) +8*fibonacci(2*n) for n in (0..30)] # G. C. Greubel, Jan 17 2020
(GAP) List([0..30], n-> Fibonacci(2*n+2) +8*Fibonacci(2*n) ); # G. C. Greubel, Jan 17 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Jul 06 2000
STATUS
approved