login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225686
a(n) = Fibonacci(2*n^2), a "Somos-like" sequence.
1
1, 21, 2584, 2178309, 12586269025, 498454011879264, 135301852344706746049, 251728825683549488150424261, 3210056809456107725247980776292056, 280571172992510140037611932413038677189525
OFFSET
1,2
LINKS
S. B. Ekhad and D. Zeilberger, How To Generate As Many Somos-Like Miracles as You Wish, arXiv:1303.5306 [math.CO], 2013.
FORMULA
a(1) = 1, a(2) = 21, a(3) = 2584, a(4) = 2178309, a(5) = 12586269025, and for n>=6, a(n) = ( 2303a(n - 4)a(n - 3)a(n - 1) + 2255a(n - 3)^2 a(n - 2) + 329a(n - 4)a(n - 1)^2 - 15792a(n - 4)a(n - 2)^2 + 329a(n - 4)a(n - 3)^2 - 2303a(n - 4)^2 a(n - 2) + 441a(n - 2) - a(n-2)^3-2961a(n-4) - a(n-5)a(n-2)a(n-1) + 329a(n-5)a(n-3)a(n-2) )/( 48a(n-4)a(n-2) ).
0 = a(n)*(+233805165*a(n+4) - 726110*a(n+6)) + a(n+1)*(-76921899285*a(n+3) + 75284537349*a(n+7)) + a(n+2)*(+11222647920*a(n+2) + 3613692630240*a(n+4) - 1138829425306704*a(n+6) - 34837488*a(n+8)) + a(n+3)*(-527230649330*a(n+3) + 526991761443*a(n+7) + 329*a(n+9)) + a(n+4)*(+516007999155*a(n+4) - 1636636155*a(n+6) - 4976784*a(n+8)) + a(n+6)*(2255*a(n+6)). for all n in Z. - Michael Somos, Dec 05 2016
MAPLE
A225686 := proc(n)
if n <= 5 then
op(n, [1, 21, 2584, 2178309, 12586269025]) ;
else
( 2303*procname(n - 4)*procname(n - 3)*procname(n - 1)
+ 2255*procname(n - 3)^2*procname(n - 2)
+ 329*procname(n - 4)*procname(n - 1)^2
- 15792*procname(n - 4)*procname(n - 2)^2
+ 329*procname(n - 4)*procname(n - 3)^2
- 2303*procname(n - 4)^2*procname(n - 2)
+ 441*procname(n - 2)
- procname(n-2)^3
-2961*procname(n-4)
- procname(n-5)*procname(n-2)*procname(n-1)
+ 329*procname(n-5)*procname(n-3)*procname(n-2) )
/ 48/procname(n-4)/procname(n-2) ;
end if;
end proc: # R. J. Mathar, Jul 09 2013
# second Maple program:
a:= n-> (<<0|1>, <1|1>>^(2*n^2))[1, 2]:
seq(a(n), n=1..12); # Alois P. Heinz, Aug 09 2018
MATHEMATICA
a[ n_] := Fibonacci[2 n^2]; (* Michael Somos, Dec 05 2016 *)
PROG
(PARI) {a(n) = fibonacci(2 * n^2)}; /* Michael Somos, Dec 05 2016 */
(Magma) [Fibonacci(2*n^2): n in [1..10]]; // G. C. Greubel, Aug 09 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 23 2013
STATUS
approved