|
|
A122801
|
|
Number of labeled bipartite graphs on 2n vertices having equal parts and no isolated vertices.
|
|
2
|
|
|
1, 1, 21, 2650, 1452605, 3149738046, 26503552820514, 868081172737564500, 111606080497500509325405, 56762846667123360827351083510, 114847831981827229530824587617895286, 927685362544629192461621864598358779955500, 29976424929810726580224613882836823991388901138994
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..50
|
|
FORMULA
|
For n>0, a(n) = A001700(n-1) * A048291(n) = A052332(2n) - A122802(2n).
|
|
PROG
|
(PARI) { A122801(n) = binomial(2*n-1, n) * sum(k=0, n, binomial(n, k) * (-1)^k * (2^(n-k)-1)^n ); }
|
|
CROSSREFS
|
Cf. A122802, A048291, A052332, A001831, A002031, A047863, A001700.
Sequence in context: A131314 A225686 A221779 * A099680 A352086 A184367
Adjacent sequences: A122798 A122799 A122800 * A122802 A122803 A122804
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Max Alekseyev, Sep 11 2006
|
|
EXTENSIONS
|
Terms a(11) and beyond from Andrew Howroyd, Nov 07 2019
|
|
STATUS
|
approved
|
|
|
|