login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225685
Number of words of length n over {0,1,2,3,4,5} which have no factor iji with i>j.
3
1, 6, 36, 201, 1116, 6211, 34581, 192501, 1071546, 5964820, 33203659, 184830438, 1028870637, 5727277021, 31881272165, 177469235044, 987894361908, 5499180045361, 30611553610680, 170401260906615, 948550017451201, 5280167123920333, 29392403504900866, 163614780272069160, 910772619152263675, 5069876709305861450, 28221807844318492913
OFFSET
0,2
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter generalized multipermutation patterns, Annals. Combin., 7 (2003), 1-14. See Th. 3.12.
FORMULA
The g.f. can be written as either
1/(1-x*(1+1/(1+x^2)+1/(1+2*x^2)+1/(1+3*x^2)+1/(1+4*x^2)+1/(1+5*x^2)))
or
-(1+x^2)*(1+2*x^2)*(1+3*x^2)*(1+4*x^2)*(1+5*x^2)/(-1-15*x^2-85*x^4-225*x^6-274*x^8-120*x^10+6*x+120*x^11+548*x^9+675*x^7+340*x^5+75*x^3)
MAPLE
F312:=proc(k) local j, t1;
t1:=add(1/(1+j*x^2), j=0..k-1);
1/(1-x*t1);
end;
seriestolist(series(F312(6), x, 40));
MATHEMATICA
CoefficientList[1/(1 - x*Sum[1/(1 + j*x^2), {j, 0, 5}]) + O[x]^30, x] (* Jean-François Alcover, Nov 24 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 21 2013
STATUS
approved