login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of words of length n over {0,1,2,3,4,5} which have no factor iji with i>j.
3

%I #17 Dec 25 2023 17:56:18

%S 1,6,36,201,1116,6211,34581,192501,1071546,5964820,33203659,184830438,

%T 1028870637,5727277021,31881272165,177469235044,987894361908,

%U 5499180045361,30611553610680,170401260906615,948550017451201,5280167123920333,29392403504900866,163614780272069160,910772619152263675,5069876709305861450,28221807844318492913

%N Number of words of length n over {0,1,2,3,4,5} which have no factor iji with i>j.

%H A. Burstein and T. Mansour, <a href="http://arXiv.org/abs/math.CO/0112281">Words restricted by 3-letter generalized multipermutation patterns</a>, Annals. Combin., 7 (2003), 1-14. See Th. 3.12.

%F The g.f. can be written as either

%F 1/(1-x*(1+1/(1+x^2)+1/(1+2*x^2)+1/(1+3*x^2)+1/(1+4*x^2)+1/(1+5*x^2)))

%F or

%F -(1+x^2)*(1+2*x^2)*(1+3*x^2)*(1+4*x^2)*(1+5*x^2)/(-1-15*x^2-85*x^4-225*x^6-274*x^8-120*x^10+6*x+120*x^11+548*x^9+675*x^7+340*x^5+75*x^3)

%p F312:=proc(k) local j,t1;

%p t1:=add(1/(1+j*x^2),j=0..k-1);

%p 1/(1-x*t1);

%p end;

%p seriestolist(series(F312(6),x,40));

%t CoefficientList[1/(1 - x*Sum[1/(1 + j*x^2), {j, 0, 5}]) + O[x]^30, x] (* _Jean-François Alcover_, Nov 24 2017 *)

%Y Cf. A005251, A123892, A123893, A123894.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, May 21 2013