login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(2*n^2), a "Somos-like" sequence.
1

%I #24 Sep 08 2022 08:46:05

%S 1,21,2584,2178309,12586269025,498454011879264,135301852344706746049,

%T 251728825683549488150424261,3210056809456107725247980776292056,

%U 280571172992510140037611932413038677189525

%N a(n) = Fibonacci(2*n^2), a "Somos-like" sequence.

%H Seiichi Manyama, <a href="/A225686/b225686.txt">Table of n, a(n) for n = 1..48</a>

%H S. B. Ekhad and D. Zeilberger, <a href="https://arxiv.org/abs/1303.5306">How To Generate As Many Somos-Like Miracles as You Wish</a>, arXiv:1303.5306 [math.CO], 2013.

%F a(1) = 1, a(2) = 21, a(3) = 2584, a(4) = 2178309, a(5) = 12586269025, and for n>=6, a(n) = ( 2303a(n - 4)a(n - 3)a(n - 1) + 2255a(n - 3)^2 a(n - 2) + 329a(n - 4)a(n - 1)^2 - 15792a(n - 4)a(n - 2)^2 + 329a(n - 4)a(n - 3)^2 - 2303a(n - 4)^2 a(n - 2) + 441a(n - 2) - a(n-2)^3-2961a(n-4) - a(n-5)a(n-2)a(n-1) + 329a(n-5)a(n-3)a(n-2) )/( 48a(n-4)a(n-2) ).

%F 0 = a(n)*(+233805165*a(n+4) - 726110*a(n+6)) + a(n+1)*(-76921899285*a(n+3) + 75284537349*a(n+7)) + a(n+2)*(+11222647920*a(n+2) + 3613692630240*a(n+4) - 1138829425306704*a(n+6) - 34837488*a(n+8)) + a(n+3)*(-527230649330*a(n+3) + 526991761443*a(n+7) + 329*a(n+9)) + a(n+4)*(+516007999155*a(n+4) - 1636636155*a(n+6) - 4976784*a(n+8)) + a(n+6)*(2255*a(n+6)). for all n in Z. - _Michael Somos_, Dec 05 2016

%p A225686 := proc(n)

%p if n <= 5 then

%p op(n,[1, 21, 2584, 2178309, 12586269025]) ;

%p else

%p ( 2303*procname(n - 4)*procname(n - 3)*procname(n - 1)

%p + 2255*procname(n - 3)^2*procname(n - 2)

%p + 329*procname(n - 4)*procname(n - 1)^2

%p - 15792*procname(n - 4)*procname(n - 2)^2

%p + 329*procname(n - 4)*procname(n - 3)^2

%p - 2303*procname(n - 4)^2*procname(n - 2)

%p + 441*procname(n - 2)

%p - procname(n-2)^3

%p -2961*procname(n-4)

%p - procname(n-5)*procname(n-2)*procname(n-1)

%p + 329*procname(n-5)*procname(n-3)*procname(n-2) )

%p / 48/procname(n-4)/procname(n-2) ;

%p end if;

%p end proc: # _R. J. Mathar_, Jul 09 2013

%p # second Maple program:

%p a:= n-> (<<0|1>, <1|1>>^(2*n^2))[1,2]:

%p seq(a(n), n=1..12); # _Alois P. Heinz_, Aug 09 2018

%t a[ n_] := Fibonacci[2 n^2]; (* _Michael Somos_, Dec 05 2016 *)

%o (PARI) {a(n) = fibonacci(2 * n^2)}; /* _Michael Somos_, Dec 05 2016 */

%o (Magma) [Fibonacci(2*n^2): n in [1..10]]; // _G. C. Greubel_, Aug 09 2018

%Y Cf. A000045, A006720, A054783.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, May 23 2013