login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221742
Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1) which are the product of four prime numbers.
2
172081, 1773289, 4463641, 295643089, 798770161, 1976295241, 122160500281, 374464040689, 444722065201, 676328168881, 1009514855521, 2382986541601, 3022286597929, 9031805532361, 33648448111489, 155773422536761, 206932492972801, 366715617643441, 708083570971801
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..500 (terms 1..87 from Vincenzo Librandi)
Umberto Cerruti, Pseudoprimi di Fermat e numeri di Carmichael (in Italian), 2013. The sequence is on page 11.
MAPLE
with(numtheory); P:=proc(q)local a, b, k, ok, n;
for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
if issqrfree(a) and nops(b)=4 then ok:=1;
for k from 1 to 4 do if not type((a-1)/(b[k][1]-1), integer) then ok:=0;
break; fi; od; if ok=1 then print(a); fi;
fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
g[n_] := (6*n+1)*(12*n+1)*(18*n+1); testQ[n_] := Block[{p, e}, {p, e} = Transpose@ FactorInteger@ n; e == {1, 1, 1, 1} && Max[Mod[n-1, p-1]] == 0]; Select[g /@ Range[10^4], testQ] (* Giovanni Resta, May 21 2013 *)
PROG
(Magma) [c: n in [1..10^4] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
CROSSREFS
Cf. A002997, A033502, A221743 (associated k).
Subsequence of A182087.
Sequence in context: A376503 A049053 A242980 * A239789 A233488 A233483
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jan 23 2013, based on the Cerruti paper.
STATUS
approved