|
|
A221744
|
|
Integer solutions to n^4 = x^3 + y^2 (values of x sorted by n).
|
|
1
|
|
|
-2, -6, -15, -42, 143, 136, 23, -3135, 1026, -2262, -25800, -26462, -954, -1417, -608399, -34544, 7656, -96222, 13038, -34177, 3825, 2506, 21505, -4959, -25435062, -45457, -51958122, 41838, -63855, -208464, 55158, -7959246, -573242, -81840, 154583, 112014, 183538, -931177, -2016462, -118026495, 147345, -285769, 553720, -568920, -5957082, -249102, 550776, -1005577
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..48.
Dario Alpern, List of first 1602 solutions to a^4 + b^3 = c^2 for increasing values of a
|
|
EXAMPLE
|
143 is in the sequence since we have 42^4 = 143^3 + 433^2.
|
|
MATHEMATICA
|
(* Same program as A096741 except the final selection : *) nmax = 25000; r[{n_, x_}] := (rn = Reduce[x != 0 && y > 0 && GCD[n, x, y] == 1 && n^4 == x^3 + y^2, y, Integers]; If[rn =!= False, {n, x, y} /. ToRules[rn], {0, 0, 0}]); tab = Table[ r@{a[k][s, t] // Abs, -b[k][s, t]}, {k, 1, 7}, {s, -5, 8}, {t, 0, 5}] // Flatten[#, 2] & // Select[#, 0 < #[[1]] < nmax &] & // Union; Select[tab, # != {0, 0, 0} &][[All, 2]]
|
|
CROSSREFS
|
Cf. A096741 for n-values and A221745 for y-values
Sequence in context: A307308 A065178 A178936 * A338861 A340726 A303833
Adjacent sequences: A221741 A221742 A221743 * A221745 A221746 A221747
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Jean-François Alcover, Jan 24 2013
|
|
STATUS
|
approved
|
|
|
|