login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A221743
Numbers k such that (6*k+1)*(12*k+1)*(18*k+1) is a Carmichael number which is the product of four prime numbers.
2
5, 11, 15, 61, 85, 115, 455, 661, 700, 805, 920, 1225, 1326, 1910, 2961, 4935, 5425, 6565, 8175, 10885, 11375, 12155, 13230, 18315, 37800, 39325, 45325, 59726, 69440, 99645, 113120, 121365, 129850, 144685, 211945, 353465, 378940, 389896, 392625
OFFSET
1,1
LINKS
MAPLE
with(numtheory); P:=proc(q)local a, b, k, ok, n;
for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
if issqrfree(a) and nops(b)=4 then ok:=1;
for k from 1 to 4 do if not type((a-1)/(b[k][1]-1), integer) then ok:=0;
break; fi; od; if ok=1 then print(n); fi;
fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
IsCarmichaelQ[n_] := Module[{f}, If[EvenQ[n] || PrimeQ[n], False, f = Transpose[FactorInteger[n]][[1]]; Union[Mod[n-1, f-1]] == {0}]]; n = 0; t = {}; While[Length[t] < 39, n++; c = (6*n + 1)*(12*n + 1)*(18*n + 1); If[SquareFreeQ[c] && Length[FactorInteger[c]] == 4 && IsCarmichaelQ[c], AppendTo[t, n]]]; t (* T. D. Noe, Jan 23 2013 *)
PROG
(Magma) [n: n in [1..4*10^5] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
CROSSREFS
Cf. A002997, A033502, A221742 (associated Carmichael numbers).
Subsequence of A101187.
Sequence in context: A136975 A136973 A276037 * A137008 A137010 A137007
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jan 23 2013, based on the Cerruti paper.
STATUS
approved