OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..500
Umberto Cerruti, Pseudoprimi di Fermat e numeri di Carmichael (in Italian), 2013. The sequence is on page 11.
MAPLE
with(numtheory); P:=proc(q)local a, b, k, ok, n;
for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];
if issqrfree(a) and nops(b)=4 then ok:=1;
for k from 1 to 4 do if not type((a-1)/(b[k][1]-1), integer) then ok:=0;
break; fi; od; if ok=1 then print(n); fi;
fi; od; end: P(10^6); # Paolo P. Lava, Oct 11 2013
MATHEMATICA
IsCarmichaelQ[n_] := Module[{f}, If[EvenQ[n] || PrimeQ[n], False, f = Transpose[FactorInteger[n]][[1]]; Union[Mod[n-1, f-1]] == {0}]]; n = 0; t = {}; While[Length[t] < 39, n++; c = (6*n + 1)*(12*n + 1)*(18*n + 1); If[SquareFreeQ[c] && Length[FactorInteger[c]] == 4 && IsCarmichaelQ[c], AppendTo[t, n]]]; t (* T. D. Noe, Jan 23 2013 *)
PROG
(Magma) [n: n in [1..4*10^5] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];
CROSSREFS
KEYWORD
nonn
AUTHOR
Bruno Berselli, Jan 23 2013, based on the Cerruti paper.
STATUS
approved