login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1) which are the product of four prime numbers.
2

%I #35 Jun 24 2023 04:21:52

%S 172081,1773289,4463641,295643089,798770161,1976295241,122160500281,

%T 374464040689,444722065201,676328168881,1009514855521,2382986541601,

%U 3022286597929,9031805532361,33648448111489,155773422536761,206932492972801,366715617643441,708083570971801

%N Carmichael numbers of the form (6*k+1)*(12*k+1)*(18*k+1) which are the product of four prime numbers.

%H Amiram Eldar, <a href="/A221742/b221742.txt">Table of n, a(n) for n = 1..500</a> (terms 1..87 from Vincenzo Librandi)

%H Umberto Cerruti, <a href="/A221742/a221742.pdf">Pseudoprimi di Fermat e numeri di Carmichael</a> (in Italian), 2013. The sequence is on page 11.

%H <a href="https://oeis.org/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.

%p with(numtheory);P:=proc(q)local a,b,k,ok,n;

%p for n from 0 to q do a:=(6*n+1)*(12*n+1)*(18*n+1); b:=ifactors(a)[2];

%p if issqrfree(a) and nops(b)=4 then ok:=1;

%p for k from 1 to 4 do if not type((a-1)/(b[k][1]-1),integer) then ok:=0;

%p break; fi; od; if ok=1 then print(a); fi;

%p fi; od; end: P(10^6); # _Paolo P. Lava_, Oct 11 2013

%t g[n_] := (6*n+1)*(12*n+1)*(18*n+1); testQ[n_] := Block[{p,e}, {p, e} = Transpose@ FactorInteger@ n; e == {1,1,1,1} && Max[Mod[n-1, p-1]] == 0]; Select[g /@ Range[10^4], testQ] (* _Giovanni Resta_, May 21 2013 *)

%o (Magma) [c: n in [1..10^4] | #PrimeDivisors(c) eq 4 and IsOne(c mod CarmichaelLambda(c)) where c is (6*n+1)*(12*n+1)*(18*n+1)];

%Y Cf. A002997, A033502, A221743 (associated k).

%Y Subsequence of A182087.

%K nonn

%O 1,1

%A _Bruno Berselli_, Jan 23 2013, based on the Cerruti paper.