login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220747
a(n) = (2*n+1)!! / ((floor((n-1)/3)*2+1))!!
2
1, 3, 15, 105, 315, 3465, 45045, 135135, 2297295, 43648605, 130945815, 3011753745, 75293843625, 225881530875, 6550564395375, 203067496256625, 609202488769875, 21322087106945625, 788917222956988125
OFFSET
0,2
COMMENTS
The a(n) appear in the analysis of a sequence that is related to the Madhava-Gregory-Leibniz formula for Pi, see A166107.
FORMULA
Limit_{n -> infinity} A166107(2*n)/a(2*n) = Pi.
Limit_{n -> infinity} A166107(2*n+1)/a(2*n+1) = -Pi.
E.g.f.: 2F2(5/6,7/6; 1/3,2/3; 4*x^3) + 3*x*(2F2(5/6,7/6; 2/3,4/3; 4*x^3) + 5*x*2F2(7/6,11/6; 4/3,5/3; 4*x^3)/2). - Benedict W. J. Irwin, Oct 19 2016
MAPLE
A220747 := n -> doublefactorial(2*n+1)/doublefactorial(A130823(n)): A130823 := n -> floor((n-1)/3)*2+1: seq(A220747(n), n=0..20);
MATHEMATICA
Table[(2*n + 1)!!/((Floor[(n - 1)/3]*2 + 1))!!, {n, 0, 20}] (* T. D. Noe, Feb 26 2013 *)
CoefficientList[Series[HypergeometricPFQ[{5/6, 7/6}, {1/3, 2/3}, 4 x^3] + 3/2 x (2 HypergeometricPFQ[{5/6, 7/6}, {2/3, 4/3}, 4 x^3] + 5x HypergeometricPFQ[{7/6, 11/6}, {4/3, 5/3}, 4 x^3]), {x, 0, 20}], x]*Range[0, 20]! (* Benedict W. J. Irwin, Oct 19 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Feb 26 2013
STATUS
approved