Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Nov 03 2016 08:13:07
%S 1,3,15,105,315,3465,45045,135135,2297295,43648605,130945815,
%T 3011753745,75293843625,225881530875,6550564395375,203067496256625,
%U 609202488769875,21322087106945625,788917222956988125
%N a(n) = (2*n+1)!! / ((floor((n-1)/3)*2+1))!!
%C The a(n) appear in the analysis of a sequence that is related to the Madhava-Gregory-Leibniz formula for Pi, see A166107.
%F Limit_{n -> infinity} A166107(2*n)/a(2*n) = Pi.
%F Limit_{n -> infinity} A166107(2*n+1)/a(2*n+1) = -Pi.
%F E.g.f.: 2F2(5/6,7/6; 1/3,2/3; 4*x^3) + 3*x*(2F2(5/6,7/6; 2/3,4/3; 4*x^3) + 5*x*2F2(7/6,11/6; 4/3,5/3; 4*x^3)/2). - _Benedict W. J. Irwin_, Oct 19 2016
%p A220747 := n -> doublefactorial(2*n+1)/doublefactorial(A130823(n)): A130823 := n -> floor((n-1)/3)*2+1: seq(A220747(n), n=0..20);
%t Table[(2*n + 1)!!/((Floor[(n - 1)/3]*2 + 1))!!, {n, 0, 20}] (* _T. D. Noe_, Feb 26 2013 *)
%t CoefficientList[Series[HypergeometricPFQ[{5/6, 7/6}, {1/3, 2/3}, 4 x^3] + 3/2 x (2 HypergeometricPFQ[{5/6, 7/6}, {2/3, 4/3}, 4 x^3] + 5x HypergeometricPFQ[{7/6, 11/6}, {4/3, 5/3}, 4 x^3]), {x, 0, 20}], x]*Range[0, 20]! (* _Benedict W. J. Irwin_, Oct 19 2016 *)
%Y Cf. A000796, A001147, A130823, A166107.
%K nonn,easy
%O 0,2
%A _Johannes W. Meijer_, Feb 26 2013