login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219931
Coefficients related to an asymptotic expansion of the logarithm of the central binomial.
2
1, 6, 5, 28, 9, 22, 13, 120, 17, 38, 21, 92, 25, 54, 29, 496, 33, 70, 37, 156, 41, 86, 45, 376, 49, 102, 53, 220, 57, 118, 61, 2016, 65, 134, 69, 284, 73, 150, 77, 632, 81, 166, 85, 348, 89, 182, 93, 1520, 97, 198, 101, 412, 105, 214, 109, 888, 113, 230, 117
OFFSET
1,2
COMMENTS
An asymptotic expansion of the logarithm of the central binomial (A000984) for n>0 is given by log(binomial(2*n,n)) ~ (n*log(16)-log(Pi)-log(n) + sum_{k>=1}((-4)^(-k)*A002425(k)/a(k)*n^(1-2*k)))/2.
An asymptotic expansion of the logarithm of the swinging factorial (A056040) for n>1 is given by log(swing(n)) ~ (n*log(4)-log(Pi)-(-1)^n*(log(n/2) - (1/2)*sum_{k>=1}((-1)^k*A002425(k)/a(k)*n^(1-2*k))))/2.
LINKS
FORMULA
a(2^p*n - 2^(p-1)) = 2^(p-1)*(2^p-1) + 4^p*(n-1) for p >= 1. - Johannes W. Meijer, Dec 09 2012
a(n) = denominator(2*E(2*n+1,1)/(2*n+1)) where E(n,x) is the Euler polynomial. - Peter Luschny, Apr 03 2014
EXAMPLE
log(binomial(2*n,n)) = n*log(4) - (log(n)+log(Pi))/2 - 1/(8*a(1)*n) + 1/(32*a(2)*n^3) - 1/(128*a(3)*n^5) + 17/(512*a(4)*n^7) - 31/(2048*a(5)*n^9) + 691/(8192*a(6)*n^11) + O(1/n^13).
log(swing(n)) = n*log(2) - (1/2)*log(Pi) - (1/4)*(-1)^n*(2*log(n/2) + 1/(a(1)*n) - 1/(a(2)*n^3) + 1/(a(3)*n^5) - 17/(a(4)*n^7) + 31/(a(5)*n^9) - 691/(a(6)*n^11)) + O(1/n^13).
MAPLE
Coeff_list := proc(len) local n;
asympt(ln(n/2)/2+lnGAMMA(n/2+1/2)-lnGAMMA(n/2+1), n, 2*len+3);
subs(n=1/n, simplify(convert(%, polynom)));
[seq(4*coeff(unapply(%, n)(n), n, 2*k+1), k=0..len-1)] end:
A219931_list := n -> denom(Coeff_list(n)); A219931_list(59);
# second Maple program:
A006516 := n -> 2^(n-1)*(2^n-1): A029837 := n -> ceil(simplify(log[2](n))): nmax:=59: for n from 1 to nmax do for p from 1 to A029837(nmax) do a(2^p*n - 2^(p-1)) := A006516(p) + 4^p*(n-1) od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Dec 09 2012
MATHEMATICA
max = 60; s = Normal[Series[Log[x/2]/2+LogGamma[x/2+1/2]-LogGamma[x/2+1], {x, Infinity, 2*max}]] /. x -> 1/x; a[n_] := Denominator[4*Coefficient[s, x^(2*n-1), 1]]; Table[a[n], {n, 1, max}] (* Jean-François Alcover, Feb 17 2014 *)
a[n_] := Denominator[2*EulerE[2*n-1, 1]/(2*n-1)]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Apr 04 2014, after Peter Luschny *)
PROG
(Sage)
def A219931_list(len): # After Johannes W. Meijer
z = s = 1; a = {}; p = len + 1
while p > 0:
p >>= 1; n = 0; i = z; z = z*2;
s = s*4; u = (s-z)/2
while i <= len:
a[i] = u + s*n
i += z; n += 1
return [a[i] for i in (1..len)]
A219931_list(59) # Peter Luschny, Dec 09 2012
CROSSREFS
Cf. A118413.
Sequence in context: A371253 A267743 A298155 * A296192 A070399 A137763
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 01 2012
STATUS
approved