login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219364
Numbers such that the product of divisors of n is greater than the product of divisors of sigma(n).
2
4, 9, 16, 18, 25, 36, 48, 50, 64, 72, 80, 81, 100, 112, 144, 162, 192, 200, 208, 225, 240, 256, 288, 289, 300, 320, 324, 336, 400, 432, 441, 448, 450, 468, 484, 512, 576, 578, 592, 624, 625, 648, 676, 704, 720, 729, 768, 784, 800, 832, 882, 900, 960, 976
OFFSET
1,1
COMMENTS
That is, numbers satisfying A007955(n) > A007955(A000203(n)).
LINKS
F. Luca, On the product of divisors of n and sigma(n), J. Inequal. Pure Appl. Math., Volume 4, Issue 2, Article 46, 2003.
MATHEMATICA
Select[Range[1000], Times @@ Divisors[#] > Times @@ Divisors[DivisorSigma[1, #]] &] (* T. D. Noe, Nov 19 2012 *)
PROG
(PARI) A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
is(n)=A007955(n)>A007955(sigma(n)) \\ Charles R Greathouse IV, Feb 04 2013
(Python)
from math import isqrt
from itertools import count, islice
from sympy import divisor_count, divisor_sigma
def A219364_gen(): # generator of terms
return filter(lambda n: (f:=(lambda m:isqrt(m)**c if (c:=divisor_count(m)) & 1 else m**(c//2)))(n) > f(divisor_sigma(n)), count(1))
A219364_list = list(islice(A219364_gen(), 20)) # Chai Wah Wu, Jun 25 2022
CROSSREFS
Sequence in context: A102646 A104021 A073804 * A195212 A332443 A313323
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Nov 19 2012
STATUS
approved