login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219248
Numbers such that the absolute difference of any two adjacent (decimal) digits is prime.
8
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 16, 18, 20, 24, 25, 27, 29, 30, 31, 35, 36, 38, 41, 42, 46, 47, 49, 50, 52, 53, 57, 58, 61, 63, 64, 68, 69, 70, 72, 74, 75, 79, 81, 83, 85, 86, 92, 94, 96, 97, 130, 131, 135, 136, 138, 141, 142, 146, 147, 149, 161, 163, 164
OFFSET
1,3
COMMENTS
Numbers which may (and do) occur in A219250 and A219249 (union {0}).
This is to A219250 and A219249 what A182175 is to A182177 and A182178.
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
E. Angelini, Any digit-pair in S sums to a prime, SeqFan list, Apr 11 2013
MATHEMATICA
Select[Range[0, 200], And@@PrimeQ[Abs[Differences[IntegerDigits[#]]]]&] (* Harvey P. Dale, Jun 06 2014 *)
PROG
(PARI) is_A219248(n)={!for(i=2, #n=digits(n), isprime(abs(n[i-1]-n[i]))||return)}
(Python)
def ok(n):
d = list(map(int, str(n)))
return all(abs(d[i]-d[i-1]) in {2, 3, 5, 7} for i in range(1, len(d)))
print([k for k in range(164) if ok(k)]) # Michael S. Branicky, Sep 11 2024
(Python)
from itertools import count, islice
def A219248gen(seed=None): # generator of terms
nxt = {None:"123456789", "0":"2357", "1":"3468", "2":"04579",
"3":"01568", "4":"12679", "5":"02378", "6":"13489",
"7":"02459", "8":"1356", "9":"2467"}
def bgen(d, seed=None):
if d == 0: yield tuple(); return
yield from ((i, )+t for i in nxt[seed] for t in bgen(d-1, seed=i))
yield 0
for d in count(1):
yield from (int("".join(t)) for t in bgen(d, seed=seed))
print(list(islice(A219248gen(), 65))) # Michael S. Branicky, Sep 11 2024
CROSSREFS
Sequence in context: A052061 A045540 A119509 * A055568 A360822 A283161
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Apr 12 2013
STATUS
approved