login
A119509
Positive numbers whose square contains no digit more than once.
8
1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 42, 43, 44, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 64, 66, 69, 71, 72, 73, 74, 78, 79, 82, 84, 86, 87, 89, 93, 95, 96, 98, 99, 113, 116, 117, 118, 124, 126, 128, 133
OFFSET
1,2
COMMENTS
There are exactly 610 terms. a(610) = 99066 and 99066^2 = 9814072356. - Rick L. Shepherd, Jul 27 2006
If we count 0, there is one more term, for a total of 611. - T. D. Noe, Jun 21 2013
LINKS
Rick L. Shepherd, Table of n, a(n) for n = 1..610 (full sequence)
MAPLE
lim:=floor(sqrt(9876543210)): A119509:={}: for n from 1 to lim do pandig:=true: d:=convert(n^2, base, 10): for k from 0 to 9 do if(numboccur(k, d)>1)then pandig:=false: break: fi: od: if(pandig)then A119509 := A119509 union {n}: fi: od: op(sort(convert(A119509, list))); # Nathaniel Johnston, Jun 23 2011
MATHEMATICA
Select[Range[1000000], Length[IntegerDigits[ # ^2]] == Length[Union[IntegerDigits[ # ^2]]] &] (* Tanya Khovanova, May 29 2007 *)
Select[Range[10^5], Max[DigitCount[#^2]] <= 1 &] (* T. D. Noe, Aug 02 2011 *)
PROG
(Magma) [n: n in [1..10^5] | #Set(d) eq #d where d is Intseq(n^2)]; // Bruno Berselli, Aug 02 2011
(PARI) is_A119509(n)=#(n=digits(n^2))==#Set(n) \\ M. F. Hasler, Sep 08 2017
(Python)
def ok(n): s = str(n**2); return n > 0 and len(set(s)) == len(s)
afull = [k for k in range(10**5) if ok(k)] # Michael S. Branicky, Nov 27 2022
CROSSREFS
Subsequence of A045540 = numbers whose squares contain an equal number of each digit that they contain. The first number that belongs to A045540 and doesn't belong to this sequence is number 88.
Sequence in context: A135140 A052061 A045540 * A219248 A055568 A360822
KEYWORD
base,fini,full,nonn
AUTHOR
Tanya Khovanova, Jul 26 2006
EXTENSIONS
More terms from Rick L. Shepherd, Jul 27 2006
STATUS
approved