login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A219196 A subsequence of the denominators of the Bernoulli numbers: a(n) = A027642(A131577(n)). 0
1, 2, 6, 30, 30, 510, 510, 510, 510, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 131070, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590, 8589934590 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Conjecture: a(15) = a(16) = 131070, a(17) through a(32) = 8589934590.

Number of different terms: 1, 1, 1, 2, 4, ... = abs(A141531)?

Factorization of terms from 2:

         2 = 2

         6 = 2*3

        30 = 2*3*5

       510 = 2*3*5*17

    131070 = 2*3*5*17*257

8589934590 = 2*3*5*17*257*65537.

Note that all factors shown are 2 or Fermat numbers (see A092506, A019434, A000215).

Empirical: using the von Staudt-Clausen theorem, terms a(17) through a(4215) are all 8589934590. - Simon Plouffe, Sep 20 2015

Using the von Staudt-Clausen theorem, a(n) is the product of 2 and all Fermat primes <= 2^(n-1)+1: see A019434.  The only known Fermat primes are 3,5,17,257,65537; it is known that there are no others < 2^(2^33)+1, so that a(n) = 8589934590 for n <= 2^33 = 8589934592. - Robert Israel, Sep 21 2015

LINKS

Table of n, a(n) for n=0..30.

Eric Weisstein's World of Mathematics, von Staudt-Clausen Theorem

MATHEMATICA

a[n_] := a[n] = Times @@ Select[ Divisors[2^(n-1)] + 1, PrimeQ]; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 07 2012 *)

PROG

(PARI) a(n) = denominator(bernfrac(1<<n--)); \\ Michel Marcus, Aug 14 2013

CROSSREFS

Cf. A092506, A019434, A000215.

Sequence in context: A095198 A126989 A128040 * A233358 A241557 A006954

Adjacent sequences:  A219193 A219194 A219195 * A219197 A219198 A219199

KEYWORD

nonn

AUTHOR

Paul Curtz, Nov 14 2012

EXTENSIONS

Extended up to a(20) by Jean-François Alcover, Dec 07 2012

More terms from Michel Marcus, Sep 27 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 30 18:47 EDT 2016. Contains 274311 sequences.