OFFSET
1,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n=1...167 from Michael De Vlieger)
EXAMPLE
a(3) = 6, since 6 has the anti-divisor 4, and it is composite.
a(4) = 30, since 30 has the anti-divisors {4, 12, 20} and none are prime.
All the integers 6 < k < 30 have at least one prime anti-divisor, and the only integers k < 6 that do not have prime antidivisors are k = {1, 2}.
MATHEMATICA
primeAntiDivisors[n_] := Select[Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)], PrimeQ]; a241556[n_Integer] := Map[Length[primeAntiDivisors[#]] &, Range[n]]; Flatten[Position[a241556[10^5], 0]]
PROG
(Python)
from sympy import isprime, divisors
A241557 = [n for n in range(1, 10**6) if not any([isprime(x) for x in
..........[2*d for d in divisors(n) if n > 2*d and n % (2*d)] +
..........[d for d in divisors(2*n-1) if n > d >=2 and n % d] +
..........[d for d in divisors(2*n+1) if n > d >=2 and n % d]])]
# Chai Wah Wu, Aug 19 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Aug 08 2014
STATUS
approved