login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217441
Numbers k such that 26*k+1 is a square.
3
0, 24, 28, 100, 108, 228, 240, 408, 424, 640, 660, 924, 948, 1260, 1288, 1648, 1680, 2088, 2124, 2580, 2620, 3124, 3168, 3720, 3768, 4368, 4420, 5068, 5124, 5820, 5880, 6624, 6688, 7480, 7548, 8388, 8460, 9348, 9424, 10360, 10440, 11424, 11508, 12540, 12628
OFFSET
1,2
COMMENTS
Equivalently, numbers of the form m*(26*m+2), where m = 0,-1,1,-2,2,-3,3,...
Also, integer values of 2*h*(h+1)/13.
FORMULA
G.f.: 4*x^2*(6 + x + 6*x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (26*n*(n-1) + 11*(-1)^n*(2*n - 1) - 3)/4 + 3 = (26*n + 11*(-1)^n - 15)*(26*n + 11*(-1)^n - 11)/104.
26*a(2*n-1)+1 = A175886(4*n-3)^2, 26*a(2*n)+1 = A175886(4*n)^2.
Sum_{n>=2} 1/a(n) = 13/2 - cot(Pi/13)*Pi/2. - Amiram Eldar, Mar 17 2022
MAPLE
A217441:=proc(q)
local n;
for n from 1 to q do if type(sqrt(26*n+1), integer) then print(n);
fi; od; end:
A217441(1000); # Paolo P. Lava, Feb 19 2013
MATHEMATICA
Select[Range[0, 13000], IntegerQ[Sqrt[26 # + 1]] &]
CoefficientList[Series[4 x (6 + x + 6 x^2)/((1 + x)^2 (1 - x)^3), {x, 0, 50}], x] (* Vincenzo Librandi, Aug 18 2013 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 24, 28, 100, 108}, 50] (* Harvey P. Dale, Nov 03 2019 *)
PROG
(Magma) [n: n in [0..13000] | IsSquare(26*n+1)];
(Magma) I:=[0, 24, 28, 100, 108]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Aug 18 2013
(PARI) a(n)=is(n)=issquare(26*n+1) \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Cf. similar sequences listed in A219257.
Cf. A174768 (the squares A174768^2 belong to the sequence), A175886.
Sequence in context: A030500 A107406 A206261 * A045668 A045659 A319901
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Nov 14 2012
STATUS
approved