login
A217443
Primes p such that p^2 is an arithmetic average of 4 consecutive primes.
0
3, 179, 443, 487, 523, 1237, 1481, 1571, 1933, 2293, 2801, 3307, 3863, 4073, 4493, 4787, 4909, 5399, 5683, 5693, 6427, 7433, 7789, 9067, 9623, 10607, 10883, 11437, 11497, 11579, 12149, 12263, 12553, 13337, 13669, 13841, 14071, 14723, 14741, 15569, 15901, 16381
OFFSET
1,1
COMMENTS
2*p is a term of A051395: 2*3 = A051395(1), 2*179 = A051395(10), 2*443 = A051395(22).
EXAMPLE
3^2 = (5+7+11+13)/4, 179^2 = (32027+32029+32051+32057)/4.
MATHEMATICA
Select[Sqrt[Mean[#]]&/@Partition[Prime[Range[147*10^5]], 4, 1], PrimeQ] (* Harvey P. Dale, Jul 27 2019 *)
CROSSREFS
Cf. A051395.
Sequence in context: A091324 A198446 A216967 * A270245 A093434 A053291
KEYWORD
nonn
AUTHOR
Zak Seidov, Oct 03 2012
STATUS
approved