login
A217234
Triangle of expansion coefficients of the sum of an n X n array with equal top row and left column (extended by the rule of Pascal's triangle) in terms of the top row elements.
0
1, 1, 4, 1, 12, 6, 1, 40, 20, 8, 1, 140, 70, 30, 10, 1, 504, 252, 112, 42, 12, 1, 1848, 924, 420, 168, 56, 14, 1, 6864, 3432, 1584, 660, 240, 72, 16, 1, 25740, 12870, 6006, 2574, 990, 330, 90, 18, 1, 97240, 48620, 22880, 10010, 4004, 1430, 440, 110, 20
OFFSET
1,3
COMMENTS
Define a finite n X n square array with indeterminate elements A(1, c), c=1..n in the top row, the same elements A(r,1 ) = A(1,r) in the first column, r=1..n, and the remaining elements defined by the Pascal triangle rule: A(r,c) = A(r,c-1)+A(r-1,c).
The triangle T(n,m) gives the coefficients in the formula Sum_{r=1..n} Sum_{c=1..n} A(r,c) = Sum_{m=1..n} T(n,m) * A(1,m).
It says how many times the first, second, third, etc. element of the first row (or the first column) contributes to the sum of the n X n array.
EXAMPLE
1;
1,4;
1,12,6;
1,40,20,8;
1,140,70,30,10;
1,504,252,112,42,12;
1,1848,924,420,168,56,14;
1,6864,3432,1584,660,240,72,16;
1,25740,12870,6006,2574,990,330,90,18;
1,97240,48620,22880,10010,4004,1430,440,110,20;
MAPLE
A217234_row := proc(n)
local A, r, c, s ;
A := array({}, 1..n, 1..n) ;
for r from 2 to n do
A[r, 1] := A[1, r] ;
end do:
for r from 2 to n do
for c from 2 to n do
A[r, c] := A[r, c-1]+A[r-1, c] ;
end do:
end do:
s := add(add( A[r, c], c=1..n) , r=1..n) ;
for c from 1 to n do
printf("%d, ", coeff(s, A[1, c]) ) ;
end do:
return ;
end proc:
for n from 1 to 10 do
A217234_row(n) ;
printf("; \n") ;
end do; # R. J. Mathar, Oct 13 2012
MATHEMATICA
A217234row [n_] := Module[{A, x, r, c, s }, A = Array[x, {n, n}]; Do[A[[r, 1]] = A[[1, r]], {r, 2, n}]; Do[A[[r, c]] = A[[r, c - 1]] + A[[r - 1, c]], {r, 2, n}, {c, 2, n}]; s = Sum[A[[r, c]], {r, 1, n}, {c, 1, n}]; If[n == 1, {1}, List @@ s /. x[_, _] -> 1]];
Table[A217234row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 04 2023, after R. J. Mathar *)
CROSSREFS
Cf. A100320 (2nd column), A000984 (third column), A162551 (third column), A024483 (4th column), A006659 (5th column), A002058 (6th column), A030662 (row sums).
Sequence in context: A106194 A272099 A329033 * A051290 A227338 A125105
KEYWORD
nonn,tabl
AUTHOR
J. M. Bergot, Sep 28 2012
EXTENSIONS
Edited by R. J. Mathar, Oct 13 2012
Typo in data corrected by Jean-François Alcover, Nov 04 2023
STATUS
approved