login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A227338 Number of n-step self-avoiding walks on cubic lattice ending at point with x = k. 5
1, 4, 1, 12, 8, 1, 44, 40, 12, 1, 172, 176, 84, 16, 1, 772, 748, 468, 144, 20, 1, 3308, 3248, 2332, 984, 220, 24, 1, 14924, 14280, 11068, 5756, 1788, 312, 28, 1, 64956, 63768, 51472, 30760, 12108, 2944, 420, 32, 1, 294252, 285296, 237832, 155912, 72948, 22732, 4516 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The number of walks ending with x = -k is the same as the number ending with x = k.
LINKS
Bert Dobbelaere, Table of n, a(n) for n = 0..275 (terms 0..152 from Joseph Myers)
J. L. Martin, The exact enumeration of self-avoiding walks on a lattice, Proc. Camb. Phil. Soc., 58 (1962), 92-101.
FORMULA
For n > 0, A001412(n) = T(n,0) + 2 * Sum_{k=1..n} T(n,k). - Bert Dobbelaere, Jan 06 2019
EXAMPLE
Initial rows (paths of length 0, 1, 2, ...):
1;
4, 1;
12, 8, 1;
44, 40, 12, 1;
...
CROSSREFS
Sequence in context: A329033 A217234 A051290 * A125105 A144878 A049424
KEYWORD
nonn,walk,tabl
AUTHOR
Joseph Myers, Jul 07 2013
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 16 12:05 EDT 2024. Contains 375965 sequences. (Running on oeis4.)