login
A227339
Fixed point of the morphism 1 -> 131, 2 -> 312, 3 -> 2.
0
1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1
OFFSET
1,2
COMMENTS
Counterexample by Labbé to a question of Hof, Knill and Simon (1995) concerning purely morphic sequences obtained from primitive morphism containing an infinite number of palindromes.
In the paper cited, the fixed point is given as acabacacabacab..., this sequence uses 1 for a, 2 for b, and 3 for c.
LINKS
A. Hof, O. Knill, and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Comm. Math. Phys., 174 (1995) number 1, pp 149-159.
Sébastien Labbé, A counterexample to a question of Hof, Knill and Simon, arXiv:1307.1589v1 [math.CO], Jul 05 2013
EXAMPLE
Start: 1
Rules:
1 --> 131
2 --> 312
3 --> 2
-------------
0: (#=1)
1
1: (#=3)
131
2: (#=7)
1312131
3: (#=17)
13121313121312131
4: (#=41)
13121313121312131213131213121313121312131
5: (#=99)
1312131312131213121313121312...
6: (#=239)
1312131312131213121313121312...
7: (#=577)
1312131312131213121313121312...
- Joerg Arndt, Jul 08 2013
MATHEMATICA
Nest[Flatten[# /. {1 -> {1, 3, 1}, 2 -> {3, 1, 2}, 3 -> {2}}] &, {1}, 5] (* Robert G. Wilson v, Nov 05 2015 *)
CROSSREFS
Cf. A010060.
Sequence in context: A361019 A157520 A325116 * A030777 A353375 A056595
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Jul 07 2013
EXTENSIONS
More terms from Joerg Arndt, Jul 08 2013
STATUS
approved