|
|
A227339
|
|
Fixed point of the morphism 1 -> 131, 2 -> 312, 3 -> 2.
|
|
0
|
|
|
1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Counterexample by Labbé to a question of Hof, Knill and Simon (1995) concerning purely morphic sequences obtained from primitive morphism containing an infinite number of palindromes.
In the paper cited, the fixed point is given as acabacacabacab..., this sequence uses 1 for a, 2 for b, and 3 for c.
|
|
LINKS
|
|
|
EXAMPLE
|
Start: 1
Rules:
1 --> 131
2 --> 312
3 --> 2
-------------
0: (#=1)
1
1: (#=3)
131
2: (#=7)
1312131
3: (#=17)
13121313121312131
4: (#=41)
13121313121312131213131213121313121312131
5: (#=99)
1312131312131213121313121312...
6: (#=239)
1312131312131213121313121312...
7: (#=577)
1312131312131213121313121312...
|
|
MATHEMATICA
|
Nest[Flatten[# /. {1 -> {1, 3, 1}, 2 -> {3, 1, 2}, 3 -> {2}}] &, {1}, 5] (* Robert G. Wilson v, Nov 05 2015 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|