login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A217045
Primes that remain prime when a single "4" digit is inserted between any two adjacent decimal digits.
4
19, 37, 43, 61, 67, 73, 97, 109, 199, 211, 223, 241, 349, 409, 421, 457, 463, 541, 571, 751, 757, 823, 991, 1033, 1087, 1321, 1423, 1447, 1543, 2749, 3361, 3469, 3499, 3847, 4111, 4273, 4483, 5059, 5437, 5443, 5449, 6373, 6709, 6793, 7687, 8089, 8221, 8443
OFFSET
1,1
LINKS
EXAMPLE
87697 is prime and also 876947, 876497, 874697 and 847697.
MAPLE
with(numtheory);
A217045:=proc(q, x)
local a, b, c, i, n, ok;
for n from 5 to q do
a:=ithprime(n); b:=0;
while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1;
for i from 1 to b-1 do
c:=a+9*10^i*trunc(a/10^i)+10^i*x;
if not isprime(c) then ok:=0; break; fi; od;
if ok=1 then print(ithprime(n)); fi;
od; end:
A217045(100000, 4)
MATHEMATICA
Select[Prime[Range[5, 1500]], AllTrue[Table[FromDigits[Insert[ IntegerDigits[ #], 4, n]], {n, 2, IntegerLength[#]}], PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 04 2017 *)
PROG
(PARI) is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=4; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Sep 25 2012
STATUS
approved