login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes that remain prime when a single "4" digit is inserted between any two adjacent decimal digits.
4

%I #14 Dec 04 2017 19:11:34

%S 19,37,43,61,67,73,97,109,199,211,223,241,349,409,421,457,463,541,571,

%T 751,757,823,991,1033,1087,1321,1423,1447,1543,2749,3361,3469,3499,

%U 3847,4111,4273,4483,5059,5437,5443,5449,6373,6709,6793,7687,8089,8221,8443

%N Primes that remain prime when a single "4" digit is inserted between any two adjacent decimal digits.

%H Paolo P. Lava, <a href="/A217045/b217045.txt">Table of n, a(n) for n = 1..141</a>

%e 87697 is prime and also 876947, 876497, 874697 and 847697.

%p with(numtheory);

%p A217045:=proc(q,x)

%p local a,b,c,i,n,ok;

%p for n from 5 to q do

%p a:=ithprime(n); b:=0;

%p while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1;

%p for i from 1 to b-1 do

%p c:=a+9*10^i*trunc(a/10^i)+10^i*x;

%p if not isprime(c) then ok:=0; break; fi; od;

%p if ok=1 then print(ithprime(n)); fi;

%p od; end:

%p A217045(100000,4)

%t Select[Prime[Range[5,1500]],AllTrue[Table[FromDigits[Insert[ IntegerDigits[ #],4,n]],{n,2,IntegerLength[#]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Dec 04 2017 *)

%o (PARI) is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=4; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ _Charles R Greathouse IV_, Sep 26 2012

%Y Cf. A050674, A050711-A050719, A069246, A159236, A215417, A215419-A215421, A217044, A217046, A217047, A217062-A217065

%K nonn,base

%O 1,1

%A _Paolo P. Lava_, Sep 25 2012